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Spontaneous neural encoding of social  
network position
Carolyn Parkinson1*, Adam M. Kleinbaum2 and Thalia Wheatley3

Unlike many species that enact social behaviour in loose 
aggregations (such as swarms or herds), humans form groups 
comprising many long-term, intense, non-reproductive bonds 
with non-kin1. The cognitive demands of navigating such 
groups are thought to have significantly influenced human 
brain evolution2. Yet little is known about how and to what 
extent the human brain encodes the structure of the social 
networks in which it is embedded. We characterized the social 
network of an academic cohort (N = 275); a subset (N = 21) 
completed a functional magnetic resonance imaging (fMRI) 
study involving viewing individuals who varied in terms of 
‘degrees of separation’ from themselves (social distance), the 
extent to which they were well-connected to well-connected 
others (eigenvector centrality) and the extent to which they 
connected otherwise unconnected individuals (brokerage). 
Understanding these characteristics of social network posi-
tion requires tracking direct relationships, bonds between 
third parties and the broader network topology. Pairing net-
work data with multi-voxel pattern analysis, we show that 
information about social network position is accurately per-
ceived and spontaneously activated when encountering famil-
iar individuals. These findings elucidate how the human brain 
encodes the structure of its social world and underscore the 
importance of integrating an understanding of social net-
works into the study of social perception.

Relationships are intrinsic to human behaviour. Everyday inter-
actions are shaped not only by our own relationships, but also by 
knowledge of bonds between third parties and the broader social 
networks in which we are embedded. Well-connected individu-
als can effectively threaten or bolster one’s reputation3, those who 
bridge otherwise disparate groups can efficiently seek and spread 
information4, and knowledge of mutual ties influences information-
sharing and trust5. Human social intelligence rests, in part, on a cal-
culus that inheres in an understanding of social network structure.

Is knowledge about others’ social network positions activated 
only when explicit goals require it, or spontaneously, whenever we 
encounter familiar individuals? It may be efficient to process such 
information only when our goals require it (for example when 
determining how to obtain information, or forecasting the reper-
cussions of a social misstep). Alternatively, it may be beneficial to 
activate such knowledge spontaneously when encountering others, 
given the importance of social network position to many aspects of 
behaviour and to impressions of status and competence3,6. Humans 
spontaneously register a great deal of information when perceiving 
other people (such as intentions, traits and emotions7,8), presumably 
to aid appropriate, beneficial social interactions. Thus, the brain 
may run several social ‘daemons’ — efficient, background processes 

that spontaneously register information useful for predicting the 
social repercussions of potential actions, and, more broadly, for 
informing cognition and behaviour.

To test whether the brain spontaneously encodes the social net-
work positions of familiar others, we scanned (using fMRI) mem-
bers of a real-world social network (see Fig.  1; Methods) as they 
viewed brief videos of 12 classmates (Fig. 2). The only task was to 
indicate when the same video was presented twice in a row (see 
Methods), to ensure attention without any instructions to retrieve 
social relationship knowledge or person knowledge more generally. 
Therefore, we consider any information about social network posi-
tion encoded while participants performed this task to be retrieved 
spontaneously (that is, without instruction).

Each classmate in each participant’s stimulus set was character-
ized according to three metrics derived from the social network 
data: geodesic social distance from the participant; eigenvector cen-
trality; and constraint, an inverse measure of brokerage. Geodesic 
social distance refers to the minimum number of intermediary 
social ties required to connect two individuals. Eigenvector cen-
trality is a prestige-based centrality metric that considers not only 
how many connections a given individual has, but also the centrali-
ties characterizing each contact9. High eigenvector centrality (high 
EC) implies that an individual is well-connected to well-connected  
others; low EC implies that an individual has few friends and that 
these friends tend to be unpopular. Prestige-based centrality met-
rics are particularly useful for characterizing social status, given that 
being named as a friend by a popular individual should increase 
one’s sociometric status (that is, the extent to which someone is 
liked by others) more than being named by someone less popular9. 
Individuals who connect others who would not otherwise be con-
nected occupy network positions low in constraint, and have the 
capacity to serve as ‘brokers’ of resources (for example, information) 
in the network. Because of the structure of their local social ties, 
brokers can coordinate behaviour and translate information across 
structural holes in networks4.

To probe for the spontaneous encoding of social network posi-
tion information, we used representational similarity analysis 
(RSA), which distills fMRI response patterns into representational 
dissimilarity matrices (RDMs) that indicate the degree to which par-
ticular brain regions distinguish between sets of stimuli or mental 
states10. Because RDMs are abstracted away from the spatial layout 
of neuroimaging data (they are indexed by experimental condition; 
Fig. 3), RSA affords the evaluation of the degree to which similarity 
structures characterizing the representational content of particular 
brain regions reflect those characterizing data acquired using other 
modalities of measurement or computational models10 (here, the 
social network data). Specifically, in the current study, we used a 
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general linear model (GLM) decomposition searchlight approach11. 
Neural RDMs were iteratively extracted within 9-mm-radius  
spheres centred at each point in each participant’s brain. Within 
each participant, each local neural RDM was modelled as a weighted 
combination of RDMs based on properties of the social network 
positions of the individuals in that participant’s stimulus set (Fig. 3). 
Using this technique, participants’ brains were mapped in terms 
of the degree to which the representational content of local neural 
responses to familiar others could be explained by those individuals’ 
positions in their social network, and in terms of where information 
about specific characteristics of social network position was carried 
reliably across participants (Fig. 4; Supplementary Fig. 2).

We hypothesized that geodesic social distance would be spon-
taneously encoded, given the importance of this information for 
determining self-relevance. One’s immediate social ties are obvi-
ously most self-relevant. Given the importance of reputation man-
agement for human behaviour12, individuals two ‘degrees away’ may 
be relatively important to identify and monitor: negative interactions 
with such individuals could damage relationships with one’s direct 
connections. Similarly, sharing mutual friends may enhance trust, 
given the potential reputation costs of bad behaviour5. As social 
distance between people increases, their relevance to each other 

decreases. We predicted that social-distance-related information  
would be carried in the lateral superior temporal cortex (STC) and 
inferior parietal lobule (IPL), as well as the medial prefrontal cortex 
(MPFC), given past research implicating these regions in encoding 
social distance13 and self-relevance more generally14.

Social distance was reliably signalled in a large cluster centred 
in the lateral posterior STC and extending inferiorly throughout 
the posterior lateral temporal cortex (LTC), and superiorly to the 
anterior aspect of the IPL (see Fig. 4; Supplementary Table 1). Past 
research demonstrated that multi-voxel response patterns in this 
region encode egocentric spatial and abstract (for example, social) 
distances when explicitly judging14 or mentally navigating15 such 
distances; the current findings suggest that this region also encodes 
egocentric distances spontaneously (that is, in the absence of any 
explicit distance task). Thus, when encountering a familiar indi-
vidual, knowledge of agent-to-agent relationships seems to be spon-
taneously retrieved, such that representations of other people in 
this region are organized in terms of whether someone is a friend,  
a friend-of-a-friend, or farther removed from oneself in social ties. 
It has been suggested that some regions within the posterior parietal 
cortex, such as the anterior IPL, which have well-established roles in 
representing and navigating physical space, analogously represent 
more abstract relationships (such as social ties between agents)16–18. 
The current results indicate that when encountering familiar indi-
viduals, humans may spontaneously retrieve knowledge of where 
they are located, relative to oneself, in a mental map of ‘social space’.

Although the LTC and IPL regions that carried information about 
social distance here have previously been implicated in encoding 
social distance13,14, some regions previously implicated in signalling 
social distance were not implicated in the current study. For instance, 
previous research has implicated MPFC in distinguishing friends from 
strangers13, and a recent study implicated the hippocampus and poste-
rior cingulate cortex (PCC) in tracking social distances between par-
ticipants and characters in an interactive game19. Differences between 
the current results and those observed in previous investigations  
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Figure 1 | Social network characterization. The social network of a first-
year cohort of Masters of Business Administration (MBA)  students was 
reconstructed based on responses to online questionnaires administered 
to all members of the class 5–6 months after they had first met (N =  275; 
99.3% response rate). Nodes indicate students; lines indicate reported 
social ties between them. For ease of visualization, only mutually reported 
social ties are illustrated. A subset of these students participated in an 
fMRI study conducted 8–9 months after they had first met one another. 
Orange nodes indicate fMRI study participants (N =  21); grey nodes denote 
other members of the graduate programme. Node size is proportional  
to eigenvector centrality.

2 s

4–6 s

Time

b

Distance 1

Distance 2

Distance 3

Participanta

+

Eigenvector centrality
Low High

Figure 2 | Stimulus set construction and paradigm for neuroimaging study.  
a, The geodesic distance between each fMRI study participant and every 
other student in the network was characterized. An alternative visualization 
of the network is shown in which nodes are organized into horizontal layers 
according to distance from a particular participant. Each participant’s 
stimulus set comprised 12 of his or her classmates: the two lowest- and 
two highest-EC individuals at distances of one, two and three from the 
participant in the network (that is, the classmates signified by the two 
smallest and two largest nodes within each layer in a). b, During the fMRI 
study, participants viewed brief (2-s) videos of the 12 individuals in their 
stimulus sets separated by 4–6 s of fixation. To maintain attention, a one-
back task was used (that is, participants were instructed to use a button 
press to indicate when an identical video was presented twice in a row). 
Frames from this participant’s video clip are reproduced with permission 
from the individual.
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probably reflect differences in data analytic approaches and in how 
social distance has been operationalized. In the current study, par-
ticipants only saw personally familiar individuals, and social distance 
was operationalized in terms of geodesic distance in their real-world 
social network. In previous neuroimaging studies, the term ‘social dis-
tance’ has been operationalized in widely varying ways, such as the 
presence of social ties13, the strength of social ties14, and distance from 
oneself in a two-dimensional (affiliation ×  status) representational 
space19. Given that these variables are likely to have differential con-
sequences for social cognition and behaviour, it is not surprising that 
they are encoded by at least partially distinct neural substrates.

Whereas social distance is inherently relative to the perceiver, 
other aspects of familiar others’ social network positions, such as 
the degree to which one ‘bridges’ different areas of the network 
and the number of friends someone has, are increasingly thought 
to be largely stable, possibly heritable, dispositional tendencies that 
shape social behaviour20,21. Therefore, we hypothesized that eigen-
vector centrality and constraint would be encoded in brain regions 
involved in encoding others’ traits and behavioural tendencies more 
generally, such as the MPFC, which is widely implicated in inferring 
and encoding person knowledge22 and in integrating knowledge of 
personality traits in order to signal individual identity23.

Information about eigenvector centrality was reliably carried 
in brain regions that encode individual identity when imagin-
ing others’ actions23 (for example, MPFC) and viewing faces24,25 
(for example, the temporal pole and fusiform gyrus; see Fig. 4 and 

Supplementary Table 2), suggesting that sociometric status may 
constitute a dimension of meaning for organizing mental represen-
tations of others. Eigenvector centrality was also encoded in medial 
parietal cortex (precuneus, PCC), a region previously shown to 
encode extraversion23, which is modestly correlated with eigenvec-
tor centrality26, suggesting that this region may encode dispositional 
tendencies common to both extraversion and eigenvector centrality. 
In addition, recent work has shown that the medial parietal cortex, 
as well as other regions involved in inferring others’ mental states, 
intentions and traits (for example, MPFC; temporoparietal junc-
tion), spontaneously responds to well-liked individuals in a real-
world social network, which is thought to reflect that perceivers are 
preferentially motivated to understand the internal states of popular 
others27. The current findings are consistent with the notion that 
brain regions that represent others’ internal states and behavioural 
tendencies (such as PCC and MPFC) track sociometric status, and 
suggest that like other facets of social status (for instance, domi-
nance28 or prestige29), eigenvector centrality may modulate attention 
to the internal states of others. Future behavioural studies should 
directly test the impact of eigenvector centrality on social attention.

Information about eigenvector centrality was also reliably carried 
in unexpected regions, such as extrastriate visual cortex (EVC). This 
result is unlikely to be due to low-level visual characteristics of stim-
uli, as each participant had a unique stimulus set, and because videos 
corresponding to each individual in each stimulus set were hori-
zontally mirrored on half of the trials (see Methods). This finding  
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Figure 3 | GLM decomposition searchlight. a, A spherical searchlight was moved throughout each participant’s brain. b, At each point in the brain, 
distributed patterns of neural responses to each individual in the participant’s stimulus set were extracted within a 9-mm-radius sphere centred on that 
point. c, At each searchlight centre, a neural RDM was generated based on pairwise correlation distances between local neural response patterns to each 
classmate in the participant’s stimulus set. d, The vector of dissimilarities corresponding to the off-diagonal elements in the upper triangular half of each 
local neural RDM was modelled as a weighted combination of the dissimilarity vectors corresponding to the off-diagonal elements in the upper triangular 
halves of RDMs constructed from the pairwise Euclidean distances (the absolute value of numerical differences) between individuals in each participant’s 
stimulus set in terms of social distance, eigenvector centrality and network constraint. Predictor dissimilarity vectors were z-transformed and made 
orthogonal to one another before computing regression weights.
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may nonetheless reflect the effects of social status in terms of social 
ties on visual attention. People tend to orient preferentially toward 
high-status individuals and to the loci of their attention, presumably 
to obtain behaviourally relevant information about our surround-
ings29–31. Given that eigenvector centrality is reliably signalled in EVC 
response patterns, future research should test whether visual attention 
is also preferentially allocated to central actors in one’s social network.

Eigenvector-centrality-based RDMs were also significantly related 
to neural RDMs in brain areas previously implicated in evaluating 
social status in terms of dominance, prestige and morality, such as 
the ventral MPFC and ventrolateral prefrontal cortex (VLPFC)32–34. 
The involvement of the ventral MPFC in social status encoding has 
been suggested to reflect a more general role in assessing the value 
of stimuli33, whereas the VLPFC has been suggested to encode social 
status in order to appropriately modulate behavioural responding, 
which is thought to be a primary function of status cues32. We suggest 
that these regions probably encode eigenvector centrality for similar 
reasons, as high-EC individuals have high behavioural relevance and 
value as social partners. For example, individuals connected to well-
connected others may be protected from mistreatment because they 
are more likely to be defended by others, who themselves are more 
likely to be defended. Less risk is associated with wronging a low-EC 
individual, given that low-EC individuals have little influence on the 
spread of information and other resources3.

The current results suggest that when encountering a familiar 
individual, the degree to which that individual is well-connected to 
well-connected others shapes processes related to valuation, behav-
ioural modulation, attention, and encoding others’ internal states, 
dispositional characteristics and identities. Many of these findings 
echo the known effects of other dimensions of social status (for exam-
ple status conferred by dominance). Although a great deal of past psy-
chological and neuroimaging research on social status has focused on 
physical dominance, we note that overt physical violence is relatively 
rare in contemporary human groups35 and that social support and 
reputation management are central to everyday human life12. Social 
power in such groups may be relatively less contingent on individ-
ual strength and physical aggression, and more dependent on group 
dynamics and affiliative relationship maintenance. Thus, sociometric 
status is likely to be especially relevant to modern humans, and merits 
further attention in social perception and neuroscience research.

In addition to social distance and eigenvector centrality, diverse 
aspects of social cognition and behaviour (for example, deciding how 
to effectively seek or spread information; trust decisions) would bene-
fit from encoding network constraint. Low-constraint individuals can 

broker the flow of information between groups, and thus exert a dispro-
portionate influence on the flow of ideas and resources4. Additionally, 
individuals in relatively ‘closed’ local networks, characterized by high 
constraint, suffer greater reputation costs for bad behaviour; corre-
spondingly, constraint can foster trust and cooperation4. Given the 
dearth of previous research investigating the perception of constraint, 
we made no specific predictions about which brain regions would be 
involved in encoding this facet of social network position.

Large clusters spanning both right and left lateral STC carried 
information about constraint (Supplementary Table 3), as did a 
smaller cluster in the supplementary motor area. Although the lat-
eral STC and supplementary motor area are implicated in biological 
motion processing36 and action understanding37, respectively, this 
finding was not attributable to the amount of movement in videos 
(see Supplementary Information). A perceiver’s knowledge of the 
network constraint of an individual, or of associated dispositions, 
may affect how that perceiver attends to that individual’s movements. 
Because brokers may be perceived as exceptionally charismatic or 
interesting (for example, because they often serve as sources of new 
information or opportunities4), they may command differential 
amounts of attention to their expressions and gestures. Brokers may 
also differ in the amount of social meaning carried in their facial 
and bodily movements (for example, using movement to express 
oneself coherently versus fidgeting aimlessly). The latter explana-
tion would be consistent with evidence that the STC responds to the 
social meaning, rather than amount, of movement in dynamic dis-
plays38. Future studies could arbitrate between these hypotheses by 
testing whether strangers are able to differentiate between individu-
als high and low in constraint based on their observed movements. 
If so, this would suggest that network constraint is encoded in lateral 
STC because this aspect of social network position is apparent in 
how individuals carry themselves. If not, this would be consistent 
with the interpretation that perceivers’ knowledge of an individual’s 
network constraint, or of qualities related to this aspect of social net-
work position, influences how perceivers attend to that individual’s 
expressions, gestures and bodily movements.

After scanning, participants were asked about their perceptions 
of each social network analysis-derived metric of interest for each 
individual in their stimulus set (see Supplementary Information). 
This allowed us to test the accuracy of participants’ perceptions 
of others’ social network positions, and to evaluate how well par-
ticipants’ perceptions matched the data used to construct their 
stimulus sets. Post-scan ratings indicated that participants’ explicit 
perceptions of the social network positions of the individuals in 
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Figure 4 | Neural encoding of social network position. Distinct brain regions encode different properties of peers’ social network positions (social 
distance, purple; eigenvector centrality, orange; constraint, green). Beta values indicate the extent to which the information contained in local  
multi-voxel response patterns to participants’ classmates could be predicted based on properties of those individuals’ social network positions;  
P <  0.05, family-wise-error-corrected. Results are projected onto a cortical surface model of the Talairach51 N27 brain using PySurfer  
(https://github.com/nipy/PySurfer).
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their stimulus sets closely matched reality. Veridical constraint had a 
significant effect on perceived constraint (β = 19.44, standard error 
(SE) = 2.01, p <  0.0001), and veridical eigenvector centrality had  
a significant effect on perceived eigenvector centrality (β = 14.95, 
SE =  0.93, p <  0.0001). Further, subjective ratings of social closeness 
(β =  − 31.00, SE =  1.62, p <  0.0001), proportion of social time spent 
together (β = − 22.74, SE =  1.84, p <  0.0001), and frequency of dis-
cussions (β = − 33.77, SE =  1.89, p <  0.0001) varied as a function of 
geodesic network distance (see Methods and Supplementary Fig. 1).

Although participants had consciously accessible knowledge 
of the characteristics of social network position studied here 
(Supplementary Fig. 1), the task used in the fMRI study (a one-
back memory task) did not require participants to retrieve that 
knowledge. Nevertheless, up to 40% of the variance in similarity 
structures of local fMRI responses to personally familiar others 
could be explained merely by characteristics of those individuals’ 
positions in the perceiver’s social network (Supplementary Fig. 2).  
These findings are consistent with behavioural evidence that 
humans spontaneously activate knowledge about other people upon 
encountering them in order to inform cognition and behaviour7,8, 
and suggest that humans spontaneously activate complex knowl-
edge about other people’s positions in their social networks when 
viewing them. The findings are also consistent with psychologists’ 
mounting appreciation of the importance of both direct and indi-
rect relationship knowledge to everyday cognition and behaviour. 
Everyday interactions are influenced not only by information that 
would be available to any observer, but also by patterns of per-
sonal and third-party relationships. By adopting an interdisciplin-
ary approach combining theory and methods from neuroscience, 
psychology and social network analysis, we can begin to uncover a 
deeper understanding of how the human brain negotiates the intri-
cacies of everyday social life.

Methods
Part 1: Social network characterization. Participants. Participants in Part 1 of the 
study were 275 first-year Masters of Business Administration (MBA) students at a 
private university in the United States who participated as part of their coursework 
on leadership (91 females; 184 males). The total class size was 277 students; two 
students failed to complete the questionnaire (response rate 99.3%). All procedures 
were completed in accordance with the standards of the Dartmouth Committee for 
the Protection of Human Subjects.

Social network characterization. To characterize the social network of all first-year 
students, an online social network survey was administered. Participants followed 
an e-mailed link to the study website where they responded to a survey designed to 
assess their position in the social network of first-year students in their academic 
programme. The survey question was adapted from Burt39 and has been previously 
used in the modified form used here26,40. It read, “Consider the people with  
whom you like to spend your free time. Since you arrived at [institution name], 
who are the classmates you have been with most often for informal social  
activities, such as going out to lunch, dinner, drinks, films, visiting one  
another’s homes, and so on?”

A roster-based name generator was used to avoid inadequate or biased recall. 
Classmates’ names were listed in four columns, with one column corresponding to 
each section of students in the MBA programme. Names were listed alphabetically 
within section. Participants indicated the presence of a social tie with an individual 
by placing a checkmark next to his or her name. Participants could indicate 
any number of social ties and had no time limit for responding. The result is a 
friendship network based on voluntary social interactions.

Social network analysis was performed using the R package igraph41,42. 
Three social-network-derived metrics were extracted for each node: constraint, 
eigenvector centrality and geodesic distance from each classmate, as described in 
greater detail below.

Constraint. The constraint of actor i is given by the following equation, where Pij 
corresponds to the proportion of i's direct social ties accounted for by his/her tie to 
actor j. The inner summation approximates the indirect constraint imposed on i by 
other actors, q, who are socially connected to both i and j (mutual friends of i and j):
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An unweighted, undirected graph was used to estimate constraint; that is, the 
presence of any social tie, irrespective of its direction, was used to compute the 
constraint of each node. Constraint is an inverse measure of network brokerage.

Eigenvector centrality. A graph consisting of nodes connected by edges can be 
characterized by an adjacency matrix A, populated by elements such that aij =  1  
if nodes i and j are directly connected, and aij =  0 if these nodes are not connected. 
The eigenvector centrality of each node is given by the eigenvector of A in which 
all elements are positive. The requirement that all elements of the eigenvector  
must be positive yields a unique eigenvector solution (that is, that corresponding  
to the greatest eigenvalue). Here, when computing eigenvector centrality,  
the directionality of the graph was preserved; in the event of asymmetric 
relationships, only incoming, rather than outgoing, ties were used to compute 
eigenvector centrality.

Social distance. Geodesic social distance refers to the smallest number of 
intermediary social ties required to connect two individuals in a network. 
Individuals whom a participant named as friends have a distance of one from  
him/her. Individuals whom a participant’s friends named as friends (but who 
were not named as friends by the participant) have a distance of two from the 
participant. Individuals who were named as friends by classmates at a distance 
of two from the participant (but not by the participant or his/her friends) have a 
distance of three, and so on.

Part 2: Neuroimaging study. Participants. A subset of individuals who had 
completed Part 1 participated in a subsequent neuroimaging experiment. 
Participants were informed during class about the opportunity to participate in an 
fMRI study that was ostensibly unrelated to the online questionnaire in Part 1,  
and that they would receive $20 per hour as compensation and images of their 
brains. All participants were right-handed, fluent in English, and had normal or 
corrected-to-normal vision. Participants provided informed consent in accordance 
with the policies of the Dartmouth College Committee for the Protection of 
Human Subjects. Twenty-four participants (12 females) completed the fMRI 
study. The sample size was chosen based on previous fMRI studies using similar 
paradigms and RSA methods11,43. One participant was excluded owing to image 
artifact, and two were excluded because they scored less than 65% correct on the 
one-back memory task used in the scanner (this threshold was based on what has 
been used previously in similar studies44). Consequently, we analysed data from 
21 participants (10 females, aged 25–33, mean 27.95 years, standard deviation 
2.16 years). As a within-subjects design involving no group allocation was used, 
blinding investigators to between-subjects conditions and random assignment of 
participants to conditions were not applicable.

Image acquisition. Participants were scanned at the Dartmouth Brain Imaging 
Center using a 3T Philips Achieva Intera scanner with a 32-channel head coil. 
An echo-planar sequence (35 ms TE; 2,000 ms TR; resolution 3.0 mm ×  3.0 mm ×  
3.0 mm; matrix size 80 ×  80; field of view 240 ×  240 mm; 35 interleaved transverse 
slices with no gap; slice thickness 3.0 mm) was used to acquire functional images. 
Functional runs consisted of 180 dynamic scans, for a total acquisition time of  
360 s per run. A high-resolution T1-weighted anatomical scan was acquired for 
each participant (8.2 s TR; 3.7 ms TE; field of view 240 ×  187; resolution 0.938 mm 
×  0.938 mm ×  1.0 mm) at the end of the scanning session. Foam padding was 
placed around subjects’ heads to minimize motion.

Stimuli. Each participant’s customized stimulus set consisted of short videos  
of four individuals at each of three geodesic distances (one, two and three) from 
the participant in the social network of first-year MBA students. The two highest- 
and lowest-EC individuals at each social distance were included in the stimulus  
set (Fig. 2).

The videos used as stimuli consisted of individuals introducing themselves 
(for example, “Hi, my name is [first name], and you can call me [first name/
nickname]”). A video of this kind was made involving each student at the 
beginning of the academic year as a resource for other students and faculty. Videos were  
truncated to 2 s, beginning when the subject began to say the word “Hi”, and were 
presented without sound. Prior to entering the fMRI scanner, participants were 
shown each video with sound to familiarize themselves with the stimuli.

fMRI paradigm. The fMRI study consisted of ten runs and followed a rapid event-
related design with an inter-trial interval consisting of 4 s of fixation (Fig. 2c).  
Four null events, each consisting of an additional 2 s of fixation, were randomly 
inserted into each run. In each run, four repetitions of 14 event categories  
(12 identities; 1 null event; 1 catch trial) were pseudo-randomized such that 
there were no consecutive repeats of the same category. Horizontal mirroring 
was randomly applied to half the presentations of each stimulus within each 
run to reduce similarities within identities due to local low-level visual features. 
Catch trials involved seeing the same stimulus at the same mirroring level as the 
immediately previous stimulus (or two trials back if a catch trial followed a null 
event). Participants were instructed to press a button when an identical video was 
presented twice in a row (that is, for catch trials).
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Post-scan questionnaire. After scanning, participants were asked about their 
subjective perceptions of each social network metric of interest for each individual 
in their stimulus set, as well as questions assessing tie strength (see Supplementary 
Information). Because the constraint question asked about brokerage (that is, 
which individuals were low in network constraint), responses to this item were 
multiplied by − 1. To alleviate skew in the network data, eigenvector centralities 
and network constraint values were log-transformed prior to analysis.

The correspondence between participants’ post-scan ratings and the social 
network position characteristics of the individuals in their stimulus sets was 
assessed using linear mixed models using the R package41 lme445. For each of the 
five questions (see Supplementary Information), a model was constructed with 
participants’ ratings as the dependent measure and the relevant social network 
position characteristic as a fixed effect, as well as random intercepts and slopes for 
each participant. To test the significance of the relationship between participants’ 
ratings and social network data, p-values were computed using Satterthwaite’s 
approximation for degrees of freedom46 as implemented in lmerTest47.

fMRI data preprocessing. For fMRI data analysis, data were preprocessed and 
average voxel-wise haemodynamic responses to each identity were estimated 
using the AFNI set of programmes48. Pre-processing steps included applying 
AFNI’s 3dDespike function to remove transient, extreme values in the signal 
not attributable to biological phenomena, slice-timing correction to correct for 
interleaved slice acquisition order, alignment of the last volume of the final run to 
the high-resolution anatomical scan, registration of all functional volumes to the 
anatomical-aligned final functional volume using a six-parameter algorithm for 3D 
motion correction, spatial smoothing using a 4-mm full-width at half-maximum 
Gaussian kernel, and scaling each voxel time series to have a mean amplitude of 100.  
Prior to regression, consecutive volumes for which the Euclidean norm of the 
derivatives of the motion parameters exceeded 0.3 mm were excluded from further 
analysis, as were volumes in which more than 10% of brain voxels were identified 
as outliers by the AFNI program 3dToutcount.

Parameter estimates were extracted for each voxel using a GLM that consisted 
of gamma-variate convolved regressors for each of 13 predictors (one for each of 
the 12 identities in the participant’s stimulus set; one for catch trials), as well as 
12 regressors for each of the six de-meaned motion parameters extracted during 
volume registration and their derivatives, and three regressors for linear, quadratic 
and cubic signal drifts within each run. This procedure removed variance caused 
by regressors of no interest and resulted in an estimate of the response of each 
voxel to each trial type.

GLM decomposition searchlight. Using PyMVPA49 and SciPy50, a GLM 
decomposition searchlight11 was performed within each participant’s data. A sphere 
(radius 3 voxels) was moved throughout each participant’s brain. At each point in 
the brain, the local distributed patterns of neural responses to each person in the 
stimulus set were extracted within a sphere centred on that point, and the pairwise 
correlation distances between them were calculated to construct a local neural RDM  
(Fig. 3a–c), which was decomposed into a weighted combination of predictor 
RDMs using ordinary least squares regression (Fig. 3d). There were three predictor 
RDMs, one corresponding to each social network position metric of interest. 
Predictor RDMs were constructed by taking the Euclidean distance (the absolute 
value of the numerical difference) between the relevant social network position 
metrics for each possible pair of identities within each participant’s stimulus set. 
Each predictor RDM for each participant was then z-scored. Next, for each RDM 
(for example, the eigenvector-centrality-based RDM for a given participant),  
the variance accounted for by the remaining two predictor RDMs (for example  
the social distance and constraint-based RDMs for that participant) was  
removed using ordinary least squares regression. Thus, the resultant predictor 
RDMs were made orthogonal to one another prior to performing the GLM 
decomposition searchlight.

Because RDMs are symmetric about a diagonal of zeros, all RDMs were 
flattened to form vectors of their above-diagonal elements prior to performing 
the steps described above (that is, prior to z-scoring, orthogonalization and GLM 
decomposition). At each searchlight centre (each voxel), the GLM decomposition 
procedure yielded a β-value corresponding to each social-network-derived metric 
of interest, as well as an R2 value corresponding to how much the variance in the 
similarity structure of local neural response patterns could be explained by the 
social network positions of the individuals making up a given participant’s  
stimulus set.

Group analysis. Each subject’s maps of regression coefficients and R2 values were 
transformed to standard (Talairach51) space using AFNI: anatomical scans were 
linearly aligned to the Talairach51 template using the @auto_tlrc algorithm in 
AFNI, and the same transform was used to align each participant’s searchlight 
results to standard space prior to group analysis. To identify areas that reliably 
contained information about each specific aspect of social network position across 
participants, the regression coefficients for each RDM derived from social network 
position were tested against 0 across participants within a dilated grey matter 
mask using one-tailed (that is, whether a regression coefficient was greater than 0), 
one-sample t-tests. More specifically, FSL’s ‘randomise’52,53 programme was used to 

perform permutation tests and to generate a null distribution of cluster masses for 
multiple comparisons correction (cluster-forming threshold: p <  .01, two-tailed; 
5,000 permutations; 10-mm variance smoothing). All reported results have been 
thresholded at a family-wise error rate of 5%.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon reasonable request. Interactive 3D 
visualizations of the data depicted in Fig. 4 are available online at http://neurovault.
org/collections/JBIPYPUU/.

Code availability. The code used for the analyses is available from the 
corresponding author upon request.
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