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Abstract

The family of neuroimaging analytical techniques known as multivoxel pattern analysis (MVPA) has dramatically increased
in popularity over the past decade, particularly in social and affective neuroscience research using functional magnetic
resonance imaging (fMRI). MVPA examines patterns of neural responses, rather than analyzing single voxel- or region-based
values, as is customary in conventional univariate analyses. Here, we provide a practical introduction to MVPA and its most
popular variants (namely, representational similarity analysis (RSA) and decoding analyses, such as classification using
machine learning) for social and affective neuroscientists of all levels, particularly those new to such methods. We discuss
how MVPA differs from traditional mass-univariate analyses, the benefits MVPA offers to social neuroscientists,
experimental design and analysis considerations, step-by-step instructions for how to implement specific analyses in one’s
own dataset and issues that are currently facing research using MVPA methods.
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Introduction
Over the past two decades, the field of social neuroscience has
grown rapidly, with an explosion of research linking neuroimag-
ing data to social psychological phenomena. In such a quickly
expanding field, and as techniques become more computation-
ally sophisticated, analytical methods can become increasingly
inaccessible to scientists not in labs already using them. This
article aims to provide an accessible and practical introduction
to the family of analyses known as multivoxel pattern analysis
(MVPA) of functional magnetic resonance imaging (fMRI) data for
a broad audience of researchers, particularly social and affective
neuroscientists new to such methods.

Traditionally, univariate or mass-univariate approaches to
analyzing fMRI data have been used to examine the changes in
average or peak neural responses across conditions of a study
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(e.g. the amygdala shows greater activation to fear-inducing than
neutral stimuli). This type of approach is referred to as ‘univari-
ate’ because the corresponding statistical tests only consider
one value per condition (e.g. the average signal of a region or
voxel) at a time. Recently, more and more researchers are using
analyses that consider patterns of responses across multiple
voxels, called MVPA, rather than single voxel- or region-based
values. Since the decisions made while analyzing and designing
MVPA studies dramatically shape the final results, it is essential
to understand and think carefully about these issues, rather
than relying solely on default software settings or common lab
practices. Here, we will focus on the fundamentals of how to use
these methods by covering (i) what MVPA is and the oppor-
tunities it offers social and affective neuroscience research,
(ii) practical explanations and tips for how to implement it,
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(iii) types of questions that may be answered with this approach,
and (iv) issues currently facing research using MVPA.

What is MVPA?
fMRI data consist of a single blood-oxygen-level dependent
(BOLD) signal value at each point (i.e. voxel) in the brain for
every time point (i.e. TR). Instead of looking at each voxel
separately, or averaging across voxels’ varying signals within
a region, as in univariate analyses, MVPA looks for information
in the patterns of neural responses across voxels (Figure 1). To
illustrate this difference, imagine typing the words ‘dog’ and
‘cat’ on a keyboard. If you simply sum the number of keyboard
presses, you find no difference between the two words (i.e. no
univariate effect), but if you look at which keys were pressed
(i.e. the pattern across the whole keyboard), you find distinct
patterns that communicate distinct meanings. In the same
way, MVPA examines the information carried in the pattern of
responses, while univariate analyses only consider the overall
magnitude of the response. While any analysis that considers
multiple voxel values at a time may fall in the category of MVPA,
the two most widely used varieties of MVPA, which are often
used in tandem on the same datasets, are decoding analyses
and representational similarity analyses (RSA; Kriegeskorte et al.,
2008a), as described below.

Decoding analyses

Decoding analyses, such as classification and regression
(Table 1), try to identify what condition elicited a given neural
response. In other words, the direction of inference common
in traditional univariate analyses—P(brain|condition)—is reversed
in decoding analyses, P(condition|brain). An analysis often used
in MVPA decoding is classification, which involves attempting
to predict (i.e. classify) which categories correspond to which
observations—e.g. was a given neural response elicited by
an angry or surprised face? However, decoding analyses also
encompass methods (e.g. regression analyses) that treat data as
continuous—e.g. how angry was the face that elicited a given
neural response? Here, we will describe decoding analyses
in very general terms; see Practical Implementation section
for more details. Generally in MVPA, decoding analyses entail
applying supervised machine learning algorithms using out-
of-sample prediction, which involves separating the data into
training and testing datasets. The training dataset is used to
train an algorithm to distinguish between data corresponding
to different conditions (classification) or along a continuous
scale (regression). The resulting model is then tested on the
testing data, which it has never seen. That is, the algorithm
tries to detect generalizable systematic differences in the neural
response patterns elicited by each condition. There are numer-
ous ways of implementing out-of-sample prediction, including
k-fold cross-validation and cross-classification (see Practical
Implementation section; Table 2). The model’s ability to correctly
predict which conditions produced the multivoxel patterns in
new data reflects the extent to which this information is reliably
carried in the neural response patterns.

Such information may not be carried in the overall response
magnitude of the region and thus missed by traditional univari-
ate analyses. For example, in their seminal MVPA study, Haxby
et al. (2001) showed participants images of faces, houses and
other objects. They found that the distributed response pat-
terns in ventral temporal cortex distinguished between several
categories of visual objects. This included categories for which

the overall response magnitude in this brain region did not
differ substantially and were thus not separable using univariate
analyses (e.g. chairs, shoes, houses). Since the publication of this
paper, the use of MVPA to decode the contents of participants’
mental states has rapidly expanded, with applications ranging
from decoding what people are dreaming about (Horikawa et al.,
2013) to the sounds that they are hearing (Giordano et al., 2013),
the faces they are seeing (Goesaert and Op de Beeck, 2013) and
the people they are imagining (Hassabis et al., 2014).

Representational similarity analysis

First- vs second-order isomorphisms. Instead of looking directly
at the neural response patterns elicited by the different classes
of stimuli, RSA examines the relative similarity of the patterns
across stimuli. A direct relationship between neural responses
and stimuli (e.g. seeing faces elicits more activity in the fusiform
face area (FFA) than seeing houses) is called a first-order iso-
morphism (Figure 2B) and is the basis of most neuroscience
research. RSA, on the other hand, considers the relations among
neural response patterns, often comparing them to the relations
among a stimulus property (or, alternatively, comparing the
relations among neural response patterns across individuals). A
correspondence between two sets of relations is referred to as
a second-order isomorphism (Figure 2D; Shepard and Chipman,
1970). To illustrate this, imagine a picture of a large face on
a billboard vs a small doodle of a smiley face. The details of
the facial features themselves may vary widely across the two
images (i.e. no first-order isomorphism); however, there will be
relationships between facial features within each image that
are consistent across the two representations of faces (e.g. the
eyes will be closer to the nose than to the mouth; a second-
order isomorphism). In the same way, a brain region that encodes
some property (e.g. the presence of a human face) may not show
a direct correspondence between the intensity of that property
(e.g. how much an image resembles a human face) and its neural
response but may show a correspondence between the relations
among stimuli in terms of that property (e.g. how similar two
faces are in terms of how human they look—two people are very
similar to one another while they are both very different from
a giraffe; Figure 2C) and the relations among neural responses
(e.g. the relative similarity of neural response patterns evoked
by those three faces). Similarly, we can compare these sets of
relations among neural responses from one subject to those
from another subject to test if two people represent the stimuli
similarly. In other words, in a brain region that plays the same
functional role across individuals, patterns of neural activity
evoked by the same stimuli may show little or no correspon-
dence across individuals (Figure 2B), but the relations among
those patterns may be consistent (Figure 2D).

Comparison across modalities. To quantify the relations among
neural responses, we create a representational dissimilarity
matrix (RDM), which shows how similar the neural response
patterns elicited by each condition are to each other (Figure 2C).
In this way, we can characterize how a brain region distinguishes
between a set of stimuli (i.e. its ‘information signature’;
Kriegeskorte et al., 2008a). In addition to neural RDMs, we can
create other RDMs that reflect the differences between stimuli
based on specific properties of interest (e.g. objective attributes,
behavioral ratings, model predictions, responses measured with
other modalities). These may be compared to neural RDMs to test
which distinctions the brain ‘cares about’ (e.g. does a particular
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Fig. 1. Comparing data in univariate analyses and MVPA. This figure illustrates the differences between how data elicited by four stimuli or experimental conditions

(i.e. viewing young and old human and dog faces) is used in univariate analyses (A, B) and MVPA (C, D) as well as how to test a region defined a priori (A, C) vs at every

point in the brain (B, D). Each method results in data for each condition (right) that is analyzed and compared (see Figures 3 and 4). (A) Univariate analyses in regions

defined a priori use a summary statistic (e.g. mean or peak value) to describe the response magnitude across the entire region. (B) Univariate analyses may also be

performed on every voxel independently (mass-univariate analyses). (C) MVPA in regions defined a priori use the pattern of neural responses across all voxels strung

out into a vector. (D) In a searchlight analysis, a sphere (here with a radius of two voxels) is defined around every voxel, and the pattern of responses in this sphere is

strung out in a vector for each condition. The resulting values displayed on the right are then used in the analyses described in other figures.

brain region distinguish faces based on how human they look?
Figures 2D and 4).

Data-driven exploration of representational structure. Neural
RDMs may also be used to explore how representations are
structured in particular brain regions in a data-driven way

using tools such as multidimensional scaling (MDS), clustering
or dimensionality reduction methods (Figure 4B). For example,
when using MDS to visualize how different faces are represented
in a given brain region, we may discover that faces cluster by
age rather than affect, a phenomenon we may miss when only
testing if the affective state of the face could be decoded from
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Table 1. MVPA methods

Type of MVPA Discrete or continuous
condition labels

Supervised or
unsupervised learninga

Result of analysis

Decoding analysisb Classification Discrete Supervised Out-of-sample prediction
Regressionc Continuous Supervised Out-of-sample prediction

RSA MDS/clustering Either Unsupervised Data-driven description of
how representations are
organized

RDM comparison Either Neither (direct test of
relationship)

Relationship between
neural and non-neural
RDMs

a‘Supervised learning’ is used to uncover a mapping between a set of observations and a set of labels. This requires training data to learn the relevant distinctions
and testing data to assess its ability to accurately predict the labels for previously unseen observations. ‘Unsupervised learning’ is used to discover the underlying
structure/representation of a set of observations and does not require any model or training data.
bDecoding analyses are also referred to as ‘machine learning’ or ‘statistical learning’. This approach uses algorithms to learn mappings between data and labels. In
the context of this manuscript, these three terms are synonymous.
cWhile some forms of regression analyses are used to predict the probabilities that samples belong to discrete categories (e.g. logistic regression), in this manuscript,
we use the term ‘regression’ to encompass decoding analyses that predict continuous variables.

Fig. 2. First- and second-order isomorphisms. (A) Neural data from two participants (sets of blue and green squares represent response patterns across voxels) and

behavioral ratings (gray) for three stimuli: a happy human face, a sad human face and a giraffe face. (B) Testing for a first-order isomorphism involves directly comparing

neural response patterns across people or to behavioral ratings (e.g. testing whether a happy face elicits the same pattern or magnitude of neural responses across

participants or whether stimuli that elicit a higher rating also elicit greater neural responses). (C) RDMs capture how, and to what extent, a measure (e.g. responses in a

particular brain region, behavioral ratings) distinguishes between stimuli. (D) Testing for a second-order isomorphism involves comparing the relations among stimuli

(i.e. comparing RDMs). Here, we see that there are no direct correspondences (i.e. first-order isomorphisms) between neural responses across people or between neural

responses and behavioral ratings (B), but there are second-order isomorphisms (D). In other words, even though participants 1 and 2 show different neural response pat-

terns, the highlighted brain region in both participants treats the two human faces as similar to one another, but distinct from a giraffe face. In the same way, even though

the amount of activity in this brain region does not directly correspond with behavioral ratings (B), the behavioral data show that the two human faces are identical to

each other, and quite distinct from the giraffe face along the rated dimension, mirroring the neural dissimilarity structures. RSA tests for second-order isomorphisms,

thus facilitating comparisons across people, modalities of measurement and models, when direct correspondences are impractical or impossible to establish.

responses in that brain region (i.e. using supervised rather than
unsupervised learning; Tables 1 and 2). Discovering the structure
from the data in this manner is referred to as ‘unsupervised

learning’. This opportunity to see how the data are naturally
structured without imposing a model means RSA can be more
data-driven than decoding analyses (Table 1).
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Table 2. Glossary

Term Description

Cross-classification Training a machine learning algorithm on data from one condition
and then testing it in another.

Cross-validation The process of iteratively training a machine learning algorithm on
training data and testing the resulting model on testing data. Tests for
generalizability of the model.

Decision boundary; hyperplane A surface in the representational space that separates samples
associated with different labels (used, e.g. in SVM classification).

Feature The units of observation that form a single sample. The input
variables when using decoding (supervised learning) to predict labels.
Typically voxels.

Feature weights; model parameters The variables that a machine learning algorithm learns in the training
data. A set of values assigned to the features, which are used to
compute the predicted labels for samples in the testing data.

Folda A division of data into training data and testing data.

Hyperparameters Settings that define how a machine learning algorithm learns the best
feature weights (i.e. parameters) in the training data.

Labels The outcome variable that a machine learning algorithm tries to
predict. In classification, this is discrete. In regression, this is a
continuous measure.
Also referred to as ‘targets’.
Typically condition names or stimuli.

Margin The distance between the support vectors (closest samples with
different labels) and the decision boundary. SVM algorithms try to
maximize this margin.

Representational space A space defined by features. For m features, the representational
space will have m dimensions. Samples’ coordinates in this space are
defined by the value of each feature (e.g. the response in each voxel).

Sample A single observation. A set of features associated with a label.
Typically a single neural response pattern from a single trial or
condition.

Supervised learning A machine learning method of finding a mapping between features
and labels based on training data and then testing the trained model
on separate testing data.
Decoding analyses are types of supervised learning.

Support vectors The samples (vectors in the representational space) that define the
hyperplane in SVM learning. These are the correctly classified
samples nearest the decision boundary.

Testing data A subset of the full dataset, completely independent from the training
data, that is used to test a trained machine learning algorithm.
Samples are provided without labels to test how well the algorithm
can predict the correct labels.

Training data A subset of the full dataset that is used to train a machine learning
algorithm. Samples from the training data are provided with their
correct labels so that the algorithm can learn a mapping between
features and labels, which is then used to try to predict the labels of
the testing data samples.

Unsupervised learning A method of discovering the underlying structure of data without
considering labels. The experimenter may then consider the labels
after learning is complete (e.g. to name dimensions in MDS based on
the data labels).
MDS and clustering analyses are types of unsupervised learning.

aNote that ‘fold’ can have multiple meanings. Some refer to the individual partitions of a dataset used for model training and testing as ‘training folds’ and ‘testing
folds’, respectively. The act of partitioning the data into these sub-datasets (i.e. for training and testing) is also referred to as ‘folding’. Finally, ‘fold’ may also refer to
just a single partitioning of the data into training and testing sub-datasets. To avoid ambiguity, in this paper, we only use ‘fold’ in the latter sense.
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Comparison across individuals. Finally, RSA provides a way to
examine and compare neural data from one participant to
neural data from other people that is not affected by response
idiosyncrasies across participants (e.g. between-participant
differences in the neural response patterns themselves). That
is, two people may have different response patterns to a set
of stimuli, but similar RDMs (Figure 2). This is particularly
relevant to many fMRI researchers, given that aligning fMRI data
across subjects to a common anatomical template (e.g. Talairach
space, Talairach and Tournoux, 1988; MNI space, Mazziotta
et al., 1995) may not be sufficiently precise to align fine-
scale patterns across people: whereas coarse-scale functional
organization is relatively consistent across people, fine-scale
spatial patterns may lack substantial person-to-person corre-
spondence (Kriegeskorte and Bandettini, 2007). For example,
although the FFA may be in a relatively consistent location
across people, fine-scale response patterns within the FFA likely
vary substantially across people. By abstracting away from the
response patterns themselves (and, thus, from the spatial layout
of the data), RSA provides a way to compare representations
across models, people and modalities of measurement when
direct correspondences are difficult or impossible to establish
(Kriegeskorte et al., 2008a).

Spatially mapping effects

An important aspect of most neuroimaging studies involves
locating an effect within the brain. This is done in two primary
ways: region-based analyses, in which regions of interest
(ROIs) are defined a priori (Figure 1A and C), or point-by-point
analyses (i.e. voxel-wise for univariate analyses or searchlight for
MVPA; Figure 1B and D). In the searchlight method, the researcher
typically defines a region as a sphere of a given radius
(often 8–12 mm) surrounding each voxel in the brain and
tests if and how the activation pattern within this sphere
differs across conditions (Figure 1D). The resulting test statistic
(e.g. a t-value) is then assigned to the center voxel. This
results in a map showing the extent to which the sphere
centered on each voxel distinguishes between conditions.
It is important to note that because of this mapping pro-
cess in searchlight analyses (unlike voxel-wise analyses,
which can be thought of as a searchlight with a radius
of 0 voxels), the significant voxels in the resulting map
do not directly correspond to the voxels that differentiate
between conditions, but rather are voxels around which
spheres (comprised of additional voxels) differentiate between
conditions.

Benefits of MVPA

Analyzing multivoxel patterns, rather than the overall response
magnitudes, can provide additional insight into how a brain
region processes information. This is achieved by considering
reliable (and potentially submaximal) response patterns, exam-
ining which physical or conceptual properties that region uses
to distinguish between stimuli, and elucidating the functional
significance of overlapping responses to distinct stimuli. Each of
these benefits is considered in more detail below.

Sensitivity to information carried in distributed response patterns. A
variety of information is carried in the spatially distributed pat-
tern of responses in a brain region, not just the overall response
magnitude of that voxel or region. That is, even if a single voxel

does not significantly change across conditions when consid-
ered on its own, the signal variability of this voxel may still
contribute to a reliable response pattern that does discriminate
between conditions. These voxels are washed out or excluded
in univariate approaches, but fully considered in MVPA. Indeed,
research using direct measures of neuronal activity demon-
strates that the brain encodes many types of information in
distributed neuronal population codes (i.e. neuron activity pat-
terns; Pouget et al., 2000), from low-level sensory information
(Uchida et al., 2000) and motor plans (Georgopoulos et al., 1988)
to high-level category information (Kiani et al., 2007) and sub-
jective decisions (Kiani et al., 2014). Importantly, most social and
affective neuroscience research in humans uses indirect and
relatively spatially coarse modalities of measurement (e.g. fMRI)
rather than directly measuring neuronal firing. Fortunately, work
comparing the information content of multi-neuron and mul-
tivoxel population codes suggests that applying MVPA to fMRI
data can extract much of the same information carried in actual
neuronal population codes (Kriegeskorte et al., 2008b; cf. Dubois
et al., 2015). In other words, even though each voxel contains
tens of thousands of neurons, the same principles that apply to
distributed neuronal population codes still apply at the level of
distributed voxel patterns.

Recently, researchers have started to combine these methods
by training a decoding algorithm on test data to find the feature
weights (e.g. a linear transformation of the response pattern)
that best distinguishes the conditions of interest. Using the
weighted response patterns from the test data, you can then
use RSA to compare the transformed neural data to specific
models, thereby potentially increasing sensitivity to information
carried in those response patterns. This method, known as
‘mixed RSA’, has been best developed in regions that process
lower-level visual information (Khaligh-Razavi et al., 2017), but
may offer benefits to social neuroscientists, especially as the
field continues to develop better computational models of brain
regions that process social and affective information.

Uncovering the information content of brain regions. MVPA pro-
vides a rich characterization of how particular brain regions
organize information (i.e. the distinctions that brain regions
make about various classes of stimuli). For example, Peelen
et al. (2010) found that the medial prefrontal cortex (mPFC)
and left superior temporal sulcus (STS) have similar univariate
responses to different emotional cues conveyed using a variety
of modalities (e.g. body, face, voice), but encode which emotion
is being expressed (anger, disgust, fear, happiness or sadness)
in multivoxel response patterns that are consistent irrespective
of how a given emotion was conveyed (i.e. in the face, voice or
body). These results provide evidence that the left STS and mPFC
signal emotion in a modality-independent manner, organizing
sensory information in terms of its abstract emotional value.
Examining how relations among response patterns change (i.e.
what kinds of stimuli are treated as distinct from one another
and to what extent they are differentiated) as they progress
throughout different stages of processing can provide insight
into how information is transformed as it progresses from early
sensory cortex (where neural population codes reflect low-level
sensory properties) to later stages of processing (where neu-
ral population codes reflect higher-level, more abstract cate-
gories). More generally, examining the relative discriminability
of response patterns associated with a set of stimuli or cognitive
states can shed light on the contributions different brain regions
make to neural information processing.
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Testing the significance of overlapping activations across tasks,
domains and contexts. Numerous studies have now shown an
overlap in the ventral striatum between social (e.g. praise, happy
faces) and non-social (e.g. money, juice) rewards (e.g. Lin et al.,
2012; Bhanji and Delgado, 2014). Is that brain region really encod-
ing both types of rewards in the same way? While it is difficult
to test this with univariate analyses, MVPA can elucidate dif-
ferences by examining the extent to which similar patterns of
activity across voxels are elicited by the two kinds of reward.
Indeed, Wake and Izuma (2017) found that social and mone-
tary rewards elicit similar multivoxel response patterns as well,
suggesting that they might rely on a shared neural mechanism
for reward representation. In other cases, MVPA has revealed
that functional overlap was likely reflective of distinct under-
lying mechanisms (Peelen et al., 2006; Downing et al., 2007). It is
important to note that similar response patterns do not mean
two stimuli or conditions are represented in exactly the same
way, nor do discrepant response patterns mean that two pro-
cesses are psychologically unrelated. Rather, these similarities
are relative, and by assessing these relative differences across
conditions or stimuli, we can gain a more detailed and nuanced
picture of a brain region’s functional role and response profile.

Thus, analyzing fMRI responses within particular brain
regions in terms of distributed spatial patterns, rather than
the overall magnitude, can be useful in uncovering how those
regions process information. Whereas these fine-scale neural
response patterns are thought to be relatively idiosyncratic to
individuals, MVPA can also be applied at a relatively coarser
spatial scale (e.g. on data that have been spatially smoothed and
aligned to common anatomical templates) to reveal signatures
or ‘biomarkers’ of particular states of mind that generalize
across individuals (e.g. Wager et al., 2013; Chang et al., 2015;
Woo et al., 2017). That is, both univariate and decoding analyses
may be used to interpret what a brain region is doing (e.g. does a
region respond to/distinguish stimuli based on a given feature?),
while decoding analyses can also be used for the sole purpose
of out-of-sample prediction (e.g. to identify biomarkers; Hebart
and Baker, 2018). In addition, as described in more detail earlier
in this manuscript, methods such as RSA allow researchers to
compare data from different models, neuroimaging techniques,
individuals and even species (Kriegeskorte et al., 2008a). Thus,
MVPA is a tool that offers diverse opportunities for gaining
insights into neural information processing over and above what
can be achieved with traditional univariate approaches.

A note on terminology

It is important to mention that the methods discussed here were
not invented for, and are not isolated to, the analysis of fMRI data.
What we refer to as ‘decoding analyses’ are also referred to as
(supervised) ‘machine learning’ and ‘statistical learning’ (Hastie
et al., 2017) and are widely used across academic disciplines
and industries. Likewise, the analysis of similarity structures to
characterize mental representations and compare data across
modalities or people has a long history in psychological research
(Shepard, 1963, 1964; Shepard and Chipman, 1970; Shepard and
Cooper, 1992). ‘MVPA’ simply refers to using these data analytic
techniques, which have long histories of their own and wide-
ranging applications, to analyze multivoxel response patterns.
Given that any sort of data could be analyzed using decoding
or similarity analyses, it is of course true that the same data
analytic techniques used in MVPA could be used to analyze other
types of fMRI data (e.g. region-averaged time series, Yeshurun
et al., 2017; inter-subject similarities of response time series,

Parkinson et al., 2018; patterns of functional connectivity, Shirer
et al., 2012) or data from other neuroimaging modalities (e.g.
fNIRS, MEG, EEG; Wang et al., 2004; Wardle et al., 2016; Emberson
et al., 2017). That said, given that MVPA specifically refers to the
analysis of response patterns across fMRI voxels, in the current
paper, we focus on the application of decoding and similarity
analyses to study multivoxel response patterns. When learning
more about these methods, we encourage the readers to seek out
the excellent training resources and reference texts that focus
on these statistical techniques in a manner that is not specific
to fMRI data (e.g. Hastie et al., 2017).

Practical implementation
Here, we discuss general design and analytical considerations,
such as how stimuli are presented within and across fMRI
runs, when and how much to smooth, algorithm choices,
hyperparameter tuning, and feature selection. Importantly,
choices regarding these considerations will be greatly impacted
by your research question and paradigm and thus require an in-
depth understanding of both your research topic and the data
analytic approach you are using.

Representational spatial scale

The spatial scale at which the phenomenon you are research-
ing is represented will have important consequences for many
methodological decisions, including those related to both study
design and data analysis. For example, given that person-to-
person correspondences in functional brain organization are
more limited at finer spatial scales (e.g. voxel-to-voxel), com-
pared with coarser ones (e.g. region-to-region), when analyzing
information thought to be carried at a relatively fine spatial
scale (e.g. relatively nuanced visual distinctions, such as the
encoding of facial identity in regions of the temporal cortex, any
information likely carried in neuronal population codes based on
related literature; Kriegeskorte et al., 2007, Nestor et al., 2011), it
would make sense to conduct all aspects of analyses that involve
comparing neural response patterns (e.g. decoding, computing
neural RDMs) within each participant, in their native brain space
(i.e. without alignment to a standard anatomical template to
avoid the distortion and averaging that spatial normalization
can introduce). Relatedly, very little or no spatial smoothing of
fMRI response pattern data is preferable in cases where the infor-
mation of interest is carried in fine-grained response patterns,
which may be idiosyncratic to individuals (that said, functional
alignment methods, such as hyperalignment and the shared
response model, can make response patterns more comparable
across individuals and, thus, improve between-subject decod-
ing of such patterns; Haxby et al., 2011; Chen et al., 2015). On
the other hand, more extensive spatial smoothing of evoked
neural response patterns may be beneficial in cases where the
information of interest (e.g. the affective state a participant is
experiencing, other information that is likely encoded in the rel-
ative activity of multiple brain regions) is thought to be signaled
in coarser spatial patterns, which may be more generalizable
across people. If you are unable to estimate the granularity of the
neural representation of interest, even after looking at the past
literature using other approaches (e.g. direct neuronal record-
ings, meta-analyses) or considering your experimental goals (e.g.
building a biomarker vs determining the distinctions made by a
brain region), it may be useful to explore multiple possibilities
and report all results.
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The spatial scale at which the phenomena you are studying
are represented has consequences not just for data analysis but
also, relatedly, for experimental design. When studying phenom-
ena signaled by relatively fine-scale neural response patterns,
which may be relatively idiosyncratic to each participant, more
trials per participant are often needed to obtain robust estimates
of response patterns and to have sufficient data for decoding
analyses (e.g. since classification analyses would typically need
to be performed independently within each participant). On the
other hand, effects carried at coarser spatial scales may benefit
from larger samples, potentially with fewer trials per partici-
pant, since, in such cases, response patterns can be estimated
by aggregating across participants. The former approach (i.e.
many trials per participant with a smaller sample) could be
used to treat each participant as their own experiment and all
other participants as replications of that experiment, similar
to approaches often used in psychophysics (Smith and Little,
2018). One could also test if summary statistics (e.g. decoding
accuracies for corresponding brain regions) reliably exceed a
given value (e.g. the level of accuracy expected based on ran-
dom chance) across participants. This approach, like the latter
approach described above (i.e. fewer trials per participant with
a larger sample), is more similar to most social psychology
research and tests the entire sample against the null, rather than
each participant.

As evidenced by the fact that a single factor (the spatial scale
of representations of interest) can have widespread implications
for both the study design and analysis, it can be difficult to
provide general recommendations for best practices, as choices
are highly dependent on the specific study. As such, when mak-
ing design and analysis decisions, it is very important to care-
fully consider your topic of interest, how related research has
approached this topic and the tools and methods you are using.
Below, we discuss additional important considerations for the
design and analysis of MVPA studies.

Design considerations

Since MVPA tests if patterns of activation reliably and system-
atically differ across conditions, it is necessary to ensure that
the experimental design is optimized to obtain reliable neural
activation patterns for each condition. This requires minimizing
noise and even sampling of noise across conditions.

Minimizing noise. Including a sufficient number of trials per condition.
Just as it is important to have enough participants to minimize
the impact of noise associated with small sample studies, an
MVPA experiment must include enough samples of each condi-
tion (e.g. trials) to reliably calculate the typical activation within
each voxel per condition. As alluded to above, presenting each
participant with as many examples of each condition as possible
is particularly important in cases where pattern analyses are to
be carried out within each participant before aggregating results
across participants. The exact number of trials necessary will
differ based on the signal-to-noise ratio (SNR) of the experi-
mental design, although, generally, more is better, as long as
there is sufficient separation of trials to model the evoked neural
response. This is particularly important when trials are not aver-
aged to create a single response pattern per condition. The SNR
is affected by many factors, including the scanner, acquisition
sequence and brain region. The granularity of the phenomena
of interest and the relative distinctiveness of experimental con-
ditions being compared are also important considerations. For
example, making subtle within-category distinctions, such as

between different facial identities, would generally require more
examples/trials than making more dramatic between-category
distinctions, such as between human and dog faces.

While we discuss the opportunities for optimizing design, it
is difficult to give general recommendations for the number of
trials needed. Just as you would not recommend that 20 data
points are sufficient for a t-test without knowing how large an
effect is, we cannot recommend a specific number of trials with-
out knowing how robust the difference is between the multivoxel
response patterns evoked by a set of conditions. As mentioned
above, more samples will generally be needed for algorithms
to learn subtler distinctions between conditions; however, the
optimal trade-off between the number of trials and the inter-
stimulus interval may depend on your analytic approach (e.g.
greater spacing may benefit single-trial-level analyses, while
more tightly packed trials may benefit averaged category-level
analyses; see Zeithamova et al., 2017 and Kriegeskorte et al.,
2008a; for more detailed discussions of design optimization).

Another key determinant of the number of samples needed
for decoding is the number of features (typically, voxels).
A rule of thumb for cases where the actual separability of
categories is unknown is that the number of samples in a
training dataset should be at least 5–10 times greater than
the number of features (Jain and Chandrasekaran, 1982). In
practice, the number of samples that is feasible to acquire
in fMRI research is considerably smaller than this (e.g. even
in a small, 100-voxel ROI, having 5–10 times more samples
than features would translate into 500–1000 trials). Since it
is not possible to scan a participant indefinitely, the best
rule of thumb we can provide is to maximize the ratio of
samples to features. One way to maximize the number of
samples is to include as many trials and runs as the study
parameters allow. Another strategy is using methods that
facilitate the aggregation of data across participants (e.g. using
functional alignment to match fine-scale response patterns
across participants; using coarse-spatial scale summaries of
activity—such as patterns of activity across regions rather
than across individual voxels, if appropriate). The ratio of
samples to features can also be increased by reducing the
number of features (e.g. through feature selection, dimension
reduction, etc.). Given that in neuroimaging, studies are often
underpowered, we suggest pursuing strategies like those
outlined above to maximize the ratio of samples to features.
It is worth noting that some algorithms, such as support vector
machines (SVMs), work relatively well with large numbers of
features and that methods other than decoding, such as RSA,
may need fewer samples per condition since they do not entail
partitioning the data into training and testing sets.

Other ways to mitigate noise. In addition to including more tri-
als, another technique to minimize the impact of stimulus-
unrelated noise is to have many short runs, rather than fewer
long runs. Since noise is independent across runs, averaging
across these patterns can help achieve a robust estimate of the
distributed neural response patterns associated with specific
experimental conditions, which can improve estimations of neu-
ral RDMs and reduce the effect of noise on pattern classifiers
(Coutanche and Thompson-Schill, 2012). This also minimizes
biases that arise in within-run comparisons (Mumford et al.,
2014).

Even sampling of noise. One potential pitfall of fMRI that can be
particularly impactful on MVPA occurs when noise systemat-
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ically covaries with certain conditions. This could be external
noise (e.g. differences in instrument-related noise between runs
or between the start and end of the experiment or run) or stem
from the participant’s behavior (e.g. one condition causes the
participant to move more, causing more fluctuation in signal)
or cognition (e.g. reaction time differences between conditions;
Todd et al., 2013). Such confounds can lead to seemingly sig-
nificant results or other erroneous conclusions and should be
avoided as much as possible. Thus, (i) all conditions should
ideally be included in every run to sample variation in the
signal across runs as evenly as possible, (ii) all conditions should
have the same number of trials in every run, (iii) the order of
these trials should be optimized for your psychological ques-
tion and to minimize order effects (discussed in more detail
below), and (iv) special attention should be paid to avoid con-
founds in experimental designs (e.g. differences in task difficul-
ty/reaction times or in extraneous stimulus properties between
conditions).

MVPA can be more sensitive to noise than univariate analy-
ses, since decoding analyses will pick up on any information that
discriminates between conditions, including differences in neu-
ral patterns elicited by confounds in the stimuli (e.g. visual char-
acteristics unrelated to one’s research question that systemati-
cally differ between conditions) or instrument-related noise (e.g.
uneven distribution of conditions across the scan). As such, tra-
ditional methods for sampling noise evenly may not be sufficient
or appropriate (see Görgen et al., 2018 for further discussion and
methods for detecting design confounds). One common source
of instrument-related noise in fMRI experiments is scanner drift
(slow changes in signal throughout a run). Often, an effective way
to reduce the effect of scanner drift is to minimize autocorre-
lation in stimulus ordering by randomizing the order of events
within a run (Mumford et al., 2014). However, randomizing events
within a run is not always sufficient to negate order effects (Cai
et al., 2019) or to produce the most efficient design (Buračas and
Boynton, 2002). While a detailed discussion of ordering strategies
is beyond the scope of this paper (yet is very important and
should be carefully considered when designing an MVPA fMRI
study), there are other resources that discuss various options in
detail (de Bruijn cycles, Aguirre et al., 2011; m-sequences, Buračas
and Boynton, 2002). Generally, strategies for mitigating order
effects do not substantially differ between studies designed for
univariate or pattern analyses, but MVPA results are especially
vulnerable to the impact of confounding noise (Todd et al., 2013),
so it can be especially beneficial to consider these issues during
study design.1

Analytical considerations

Analytical considerations specific to decoding analyses. There are
many different machine learning algorithms that may be used in

1 MVPA decoding methods could successfully distinguish between con-
ditions because of differences in the multivariate means of response
patterns between conditions or because of differences in the variability
of those patterns across trials. Perhaps counterintuitively, the latter
could constitute signal rather than noise (e.g. if this information is read
out and used by other brain areas). However, differences in response
variability between conditions could also easily arise from extraneous
factors of the sort described in this section (e.g. differences between
conditions in how equally trials are distributed across runs). Thus, it is
critically important to minimize factors that could lead to differences in
both the mean and variability of response patterns between conditions.
See Hebart and Baker (2018) for an in-depth discussion of this issue.

decoding analyses. These algorithms differ in terms of how they
systematically assign labels (e.g. condition names in classifica-
tion; values in regression) based on the training data and thus
may significantly influence your results (Douglas et al., 2011).
While a detailed review of these methods is beyond the scope
of this article, here, we will briefly discuss a few algorithms that
are commonly used in fMRI studies.

Types of algorithms. Most algorithms learn to distinguish
between conditions by placing weights on each feature
(typically, voxels are the features used) that best predict the
correct labels corresponding to the data. In commonly used
linear classification algorithms, feature weights describe the
projection of each sample (e.g. each observed multivoxel
pattern) onto a decision boundary that best separates the
data into the correct conditions. In regression, weights are
used to predict the value of a continuous variable (e.g. how
old a face is) as a function of the features (e.g. as a weighted
combination of responses at each voxel). The best weights for
predicting the labels are determined during model training.
Next, during model testing, new multivoxel patterns are given
to the trained model, which then tries to predict which category
or value corresponds to that sample. The model’s predictive
performance in the test data indicates the extent to which the
neural response patterns distinguish between the experimental
conditions.

Two commonly used linear classification algorithms are lin-
ear SVMs and linear discriminant analysis (LDA; Table 3), which
both determine the weights for each feature that linearly project
the data onto a decision boundary that maximally separates
the data into the corresponding categories. Very generally, LDA
(which assumes that all variables are normally distributed and
have the same variance) does so by finding the solution that
maximizes the between-category variance relative to the within-
category variance. Linear SVM learning does so by attempting
to find a hyperplane (i.e. boundary) that separates the data
points according to their category. In cases where categories are
perfectly separable, this is achieved by maximizing the hyper-
plane’s margin (i.e. the distance between the nearest data points
of either category and the decision boundary). As such, only
samples closest to the decision boundary (also referred to as
the ‘support vectors’, because they support the dividing hyper-
plane) are what define the decision boundary in linear SVMs.
Consequently, samples far from the decision boundary (e.g. mul-
tivoxel patterns that clearly belong to either category or out-
liers) have no effect. In contrast, when using other methods,
such as LDA, all samples impact the definition of the decision
boundary (Table 3).

Some other commonly used classification algorithms simply
assign each sample the label of the closest (e.g. based on corre-
lation or Euclidean distances between multivoxel response pat-
terns) sample from the training data (nearest neighbor classifi-
cation), or of the majority of the k-nearest samples in the training
data (k-nearest neighbor classification) or of the category whose
multivariate mean (i.e. centroid) is closest in the training data
(Table 3; Haxby et al., 2001). Because nearest neighbor approaches
base distances between patterns on all features, and weight all
features equally, these algorithms often work best after having
performed feature selection (described in more detail below) so
that distances are calculated (and thus, classifications are made)
based on the most informative features.

Importantly, one should be very cautious in interpreting the
feature weights given by a trained classifier or regression model
(e.g. which voxels the algorithm most considered within a given
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Table 3. Overview of a few simple classification algorithms
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brain region or searchlight sphere). Since voxels are not indepen-
dent of each other, a voxel may receive a low (or zero) weight
from some algorithms because it does not contribute to pat-
terns that distinguish between conditions or it may simply carry
redundant information. That is, sometimes, voxels are assigned
weights of zero if another voxel within the tested region was
assigned a larger weight and carries the same information; other
times, the weights of correlated voxels decrease as a function
of the number of voxels that are correlated with one another
(Pereira et al., 2009). The relative voxel weights will also be
impacted by whether or not data have been normalized for each
voxel (i.e. to have a mean of 0 and s.d. of 1) prior to analysis.
Thus, it is often difficult or misleading to interpret the resulting
weights.

Overfitting. Assessing model performance only in the previ-
ously untouched test data is always necessary, and is particularly
critical in fMRI, because, typically, there are far more features
than samples. Indeed, whereas it is common to have hundreds
or thousands of voxels in an ROI, it is rare to have such a
high number of trials for each participant. Consequently, it will
typically be possible to find some combination of feature weights
such that the model performs very well within the training
data, without generalizing well to new data—i.e. to overfit the
model to the data and generate false positives. In addition to
having more features (typically, voxels) than samples (typically,
trials), another factor that can heighten the risk of overfitting
is how flexibly the model can conform to the shape of the
data. As such, it is often preferred to use relatively simple (e.g.
linear, rather than non-linear) models in decoding analyses of
fMRI data.

Hyperparameter tuning. Another important analysis considera-
tion pertains to hyperparameter tuning. Whereas the values of
model parameters (also known as feature weights) are learned
from the training data, additional parameters, known as ‘hyper-
parameters’, control how this learning works and, thus, need
to be set before a model is trained. The hyperparameters that
need to be set, and the reasonable ranges of values to consider,
vary by algorithm. For example, in k-nearest neighbor classifi-
cation, the number of neighboring patterns to consider when
labeling a test pattern (i.e. k) is the relevant hyperparameter
to set. Similarly, a linear SVM has a regularization hyperpa-
rameter, C, which controls the trade-off between maximizing
predictive accuracy in the training data and minimizing the
norm of the feature weights (i.e. maximizing the margin of
the hyperplane). Hyperparameters should be tuned within the
training data to ensure that the model performs well on the test
data. If you do not explicitly set values for model hyperparam-
eters, most software packages will use default values (e.g. the
default value for C for SVMs is often 1), but it is not possible
to know in advance the best values to use for a particular
problem. The process of finding the hyperparameters that result
in the best performance for a model in a particular dataset is
known as ‘hyperparameter tuning’. By tuning the hyperparam-
eters, researchers can determine the ideal hyperparameters in
a data-driven manner without basing such decisions on the
same data on which inferences will be made, thereby increasing
sensitivity while reducing false-positive rates. In practice, this
approach can facilitate an exploratory but constrained approach;
for example, one could pre-register the set of hyperparameter
values to be considered while still using the (training) data to
calibrate the eventual choice of those values to the current
dataset.

The simplest way to perform hyperparameter tuning is via a
‘grid search’ in which a model is repeatedly trained and tested
using all values (or all possible combinations of values, in cases
where a model has multiple hyperparameters) from a user-
specified list (or ‘grid’). The process of hyperparameter tun-
ing must be performed separately within each fold’s training
dataset (i.e. nested cross-validation; Figure 5), which can poten-
tially lead to different hyperparameters being selected for dif-
ferent folds. As shown in Figure 5, you can divide training data
further into sub-training and validation datasets (see Data Split-
ting section) and repeat model fitting in the smaller training
dataset with many possible hyperparameter values to determine
which hyperparameter values perform best across the valida-
tion datasets (still within the training data). Following selec-
tion of hyperparameters in this manner (i.e. hyperparameter
tuning within the training data), you would then use these
values when training the algorithm on the entire training set
before finally assessing its predictive performance on the test
data.

Analytical considerations specific to RSA.

RDM distance metrics. When creating a neural RDM, we must cal-
culate the dissimilarity between every pair of response patterns
(see RSA step-by-step instructions below). The way that this is
typically done is to first calculate the Pearson correlation coeffi-
cient, r, which corresponds to similarity, and then convert it into
the correlation distance, 1-r, which corresponds to dissimilarity.
Importantly, there are other ways to define the distance between
two neural response patterns (Nili et al., 2014; Walther et al.,
2016). These include the Euclidean distance (calculated by squar-
ing each voxel’s difference value, summing these values, then
taking the square root), the Mahalanobis distance (similar to
the Euclidean distance with normalization) and classification
accuracies from decoding analyses (where a classifier being at-
chance at discriminating between two conditions would imply
zero distance between those conditions). These various metrics
are sensitive to different aspects of the data. For example, when
comparing multivoxel patterns to generate a neural RDM, the
Pearson correlation distance is only sensitive to the difference
in the spatial pattern, but not changes in the overall neural
response magnitude, while the Euclidean distance is sensitive
to both. They can also provide varying degrees of reliability
(e.g. continuous measures are more reliable than discretized
measures, such as classification accuracies; Walther et al., 2016).

General analytical considerations: processing and selecting
features. In this section, we will discuss the considerations
related to pre-processing and voxel selection. The following
considerations apply to both decoding analyses and RSA,
although the term ‘features’ specifically refers to the predictors
that are used by a machine learning algorithm. For most fMRI
studies, voxels (or a transformation of the voxels) are the
standard features.

Which voxel-wise summary statistic to use. Once the data are pre-
processed, a general linear model (GLM) using a hemodynamic
response function is typically used to create one contrast map
(i.e. image) per condition or stimulus. Each voxel in this contrast
map signifies the average estimated level of neural activity that
was elicited in that voxel across all trials of this condition (or
for that trial, in cases where individual trials are modeled). As
with any GLM, a beta- and a t-statistic are calculated, either
of which may be used as feature measures. Betas are the raw
values that come out of the GLM (i.e. a quantification of the

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/15/4/487/5824852 by O

U
P site access user on 07 Septem

ber 2020
D

ow
nloaded from

 https://academ
ic.oup.com

/scan/article/15/4/487/5824852 by guest on 22 M
arch 2021



498 Social Cognitive and Affective Neuroscience, 2020, Vol. 15, No. 4

relationship between the hemodynamic response function and
the condition). t-values, on the other hand, scale these betas by
dividing each value by its standard error across trials. Thus, if a
particular voxel had a lot of variations in neural activity across
trials, the t-value penalizes this voxel (i.e. the voxel will have a
lower t-value) compared to a voxel with the same beta value but
less fluctuation across trials (i.e. that voxel will have a higher
t-value). This scaling of the betas into t-values can help with
pattern detection (Chadwick et al., 2012).

How and when to smooth. Smoothing is a form of spatial
averaging that recalculates each voxel’s signal by summing
the weighted values of its neighboring voxels (these weights
and how many voxels are included in the smoothing are
determined by the Gaussian kernel). Spatial smoothing in
univariate analyses is often performed as part of pre-processing
to reduce noise and increase signal detection (i.e. power). This
reduces the granularity of the signal patterns, however, and can
be detrimental when using MVPA. Thus, it is often recommended
to use no or minimal smoothing during pre-processing (Misaki
et al., 2013; cf. Op de Beeck, 2010; Hendriks et al., 2017) and
only smooth after the first-level pattern analyses are complete.
Additionally, since there is less anatomical correspondence
across participants than within subjects (and smoothing is
more beneficial when there is lower spatial correspondence
between images), the unsmoothed (or minimally smoothed)
images are often used throughout the first-level (i.e. within-
subject) analyses, and then smoothed before the second-level
(i.e. group-level) analyses, thereby increasing power to detect
convergent results across people. The amount of smoothing is
dependent on the type of task or how localized the relevant
psychological process is (Gardumi et al., 2016).

Feature selection. In most cases, the whole-brain contrast
images are masked to remove voxels that are uninformative
(e.g. voxels in ventricles; all voxels that are not in a specific ROI).
Sometimes, you may want to use a functional mask, based on an
independent dataset or meta-analysis (e.g. from neurosynth.org,
a separate study or a functional localizer). Feature selection (i.e.
selecting specific voxels) is useful in reducing the dimensionality
of your data (where the number of dimensions of a multivoxel
pattern is synonymous with the number of features/voxels it
describes) and increasing sensitivity to the question of interest.
Reducing the overall number of features also helps decrease
the time required to perform analyses and mitigates the risk of
overfitting in decoding analyses.

Importantly, feature selection generally must be defined on
separate data (i.e. data not included in training and testing
datasets) from that being used for pattern analysis (i.e. no double
dipping; Kriegeskorte et al., 2009) in order to avoid false positives
due to circular analyses in which researcher degrees of freedom
are exploited. For example, it is not appropriate to create an
ROI of the voxels that respond to faces based on all runs in
your dataset and then use MVPA to test if this ROI significantly
discriminates between faces and other images within the same
data. Instead, independent subsets of the data (e.g. data from
distinct runs or participants) generally must be used for voxel
selection and model testing. This is true whether or not feature
selection is based on which voxels generally respond most to the
stimuli (e.g. all conditions vs rest), have stable (i.e. low variance)
response patterns within a condition across runs/trials (Mitchell
et al., 2008), are more variable across conditions (Pereira et al.,
2009) or distinguish between conditions most (De Martino et al.,
2008).

In cases where researchers wish to use the same data for
both feature selection and decoding analyses, feature selection
should be performed independently within the training data
for each data fold. Different strategies and/or thresholds for
feature selection could be assessed independently within each
training data fold (by dividing the training data for each fold into
training and validation sets, similar to, and potentially in tandem
with, hyperparameter tuning, as described above; Figure 5). It is,
of course, important not to try out multiple feature selection
strategies on the data on which inferences will be made (i.e. the
testing data).

Dimension reduction. Whereas feature selection reduces the
number of features in a model by selecting a subset of features
to include in model training, without changing those features in
any way, a related family of approaches, called dimension reduc-
tion, reduces the number of features in a model by transforming
them into fewer dimensions. For example, principal components
analysis (PCA) transforms features into a set of orthogonal values
(i.e. principal components), allowing much of the variance in
correlated variables (e.g. voxels) to be explained by a smaller
number of components. Before model training, you can specify
how many components you would like to keep as features in
your model or what proportion of the variance you would like the
retained components to explain. You can base decisions about
how to set these thresholds by exploring different possibilities
within the training data, using the same nested data folding
techniques described in the above discussion of hyperparameter
tuning. Dimension reduction techniques, such as PCA, can be
beneficial in moving from a situation common in fMRI studies,
where you have far more features than samples, to one where
you have substantially fewer features in your model, but still
retain the majority of the information contained in the entire
feature set. Just as with feature selection, this can be useful
in preventing overfitting your model to the training data. In
addition, transforming features that are correlated with one
another into a smaller number of orthogonal components can
be beneficial for improving the performance of algorithms that
perform best when features are independent of one another (e.g.
naive Bayes, some linear regression algorithms).

Analytical steps

Now we will discuss how to implement MVPA in your own
research. There are several software packages now available
to help researchers use MVPA methods, including python-based
packages [e.g. Nilearn, which facilitates the use of scikit-learn for
neuroimaging data (https://nilearn.github.io), PyMVPA (http://
www.pymvpa.org), BrainIAK (https://brainiak.org/)], as well as
MATLAB toolboxes [e.g. CoSMoMVPA (http://cosmomvpa.org),
Toolbox for RSA (http://www.mrc-cbu.cam.ac.uk/methods-and-
resources/toolboxes/license/)]. Each software package differs
somewhat in terms of its default methods or parameters
and how easily certain tests are run. Below are step-by-step
instructions for running RSA and linear SVM classification
analysis. For clarity, we will describe the steps in terms of a
simple experiment in which participants view faces of humans
and dogs of varying ages. The first two steps are always
necessary, and the following steps (i.e. Step 3 and beyond) differ
based on whether one is conducting (A) classification or (B) RSA.

First steps. Step 1. Define the conditions. In our example, we will
consider response patterns elicited by four different stimulus
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conditions: pictures of baby and adult humans and dogs. Sup-
pose stimuli from each of these conditions were presented mul-
tiple times in each of 10 runs. We could model responses to each
condition (resulting in 40 samples) or individual trials (since each
stimulus was presented more than once per run).2

Step 2. Select the region of interest. Next, we must decide which
regions of the brain to test. The analysis is run on each region
separately, irrespective of the number of regions being tested
(see above for the discussion of selecting features). That is, if
analyzing a single brain region (or set of brain regions as a single
ROI), then the analysis is only run once, while a whole-brain
searchlight analysis consists of completing the analysis as many
times as there are voxels in the brain. In the remainder of this
section, all steps before significance testing will be described as
if being conducted within a single ROI within a single participant.

For each condition, the voxels within the selected region are
systematically rearranged into a vector for each condition, such
that the first voxel in the resulting vectors corresponds to the
same point in the brain for each condition (Figure 1C and D).

Classification analysis. As described earlier in this manuscript,
a classification algorithm is iteratively trained on one subset of
the data and then tested on an independent subset of the data
via cross-validation.

Step 3. Data splitting. The simplest method for partitioning a
dataset into training and testing data is the holdout method,
in which you select one subset of your data for model training
and one for model testing (e.g. use one half of trials for model
training and the other half for model testing). While this method
is simple and fast, the definition of the training and test sets (i.e.
which trials happen to end up in either partition of the data)
can be very influential on results. As such, it is more common to
use k-fold cross-validation, in which the data are divided into
training and testing sets multiple (k) times, and the training
and testing procedure is performed in each subsetting of the
data (Table 2, Figure 5). Data within each of the k subsets are
used as test data once and as training data k-1 times. It is often
recommended to leave 10–20% of data out of the training set for
a given fold (Hastie et al., 2017). For example, using 5-fold cross-
validation, data from our 10-run fMRI study would be divided
into 5 subsets (e.g. runs 1–2, 3–4, 5–6, 7–8, 9–10), and each subset
would be used as testing data once and included in the training
data 4 times. Leave-one-sample-out cross-validation is a version
of k-fold cross-validation where k is the total number of samples,
and, similarly, in leave-one-run-out cross-validation (Figure 3), k
is the number of runs in the fMRI study. In cases where pattern
information can be aggregated across participants, leave-one-
participant-out cross-validation is also an option.

To avoid biasing algorithms toward predicting one particular
category, it is important to avoid class imbalance in the training
data by including the same number of samples of each category
(e.g. stimulus, condition) in the training data. A simple strategy
is to have an equivalent number of samples of each category in
each run and use leave-one-run-out cross-validation (Figure 3).
In our study, this would amount to 10-fold cross-validation, with
data from each of our four stimuli present 9 times in each
training set and once in each testing set.

If performing feature selection or hyperparameter tuning
on this data, then the training data within each fold must

2 Note that if the trial order is not fully randomized, response patterns
should only be compared across runs for both decoding and similarity
analyses; see Mumford et al. (2014) for further discussion of this issue.

be split into sub-training and validation sub-folds (i.e. nested
cross-validation; Figure 5). Within each of these sub-folds, the
algorithm is trained on the sub-training data and tested on the
validation data iteratively to find the most predictive features
and/or optimal hyperparameters. After this iterative testing is
completed on every sub-fold within the training data, the best
hyperparameters (and features, if conducting feature selection
within the training data) are selected to be used when training
the algorithm—i.e. when determining the feature weights for
that fold (see Step 4). Note that this process may result in
different features, feature weights and hyperparameters being
used in each fold.

Step 4. Train model. Within each training set, we label the
samples with their correct labels and give this information to
our algorithm. Essentially, the model considers each multivoxel
pattern as a point in a multidimensional representational space,
such that each voxel corresponds to one dimension (Figure 3).
That is, the coordinate of a sample in this space is defined by
each voxel’s value (i.e. the x-value is the magnitude of voxel
1, the y-value is equal to the magnitude of voxel 2, etc.). If we
have m voxels in our sample, then, we have an m-dimensional
space. The algorithm tries to select model parameters such that
samples are most often assigned the correct labels.

Step 5. Test model. Once the model has been trained, we
give the algorithm the testing data, which is provided without
any labels. The model categorizes each of these new samples
based on where they fall in the representational space relative
to the boundaries that were estimated from the training data
(as in SVM learning) or relative to its neighbors in the training
data (as in k-nearest neighbor classification; Table 3). We then
count the number of errors it made in its categorization and
calculate the classification accuracy of that model. Although
classification accuracy is the most commonly used measure of
decoding success in MVPA of fMRI data, other methods, such
as the area under the ROC (receiver operating characteristic)
curve, can sometimes be preferable (Ling et al., 2003), partic-
ularly in cases where some categories are overrepresented in
the data, which could cause high classification accuracies to be
misleading.

Next the average classification accuracies across testing sets
are compared to what would be expected due to random chance
(e.g. 50% if one has two equivalently sampled categories—note
that small sample sizes may falsely increase chance accuracy;
Combrisson and Jerbi, 2015), as described in the next section.
If classification is reliably above chance, this suggests that
response patterns in this brain region distinguish between the
categories or, in other words, that this brain region ‘contains
information about’ these categories.

Representational similarity analysis. Step 3. Create RDMs. An RDM
represents the relative differences between the stimuli (or condi-
tions). For N stimuli, it is an N × N matrix with each row and col-
umn corresponding to a single stimulus. The cell corresponding
to row i and column j is the difference (i.e. dissimilarity, distance)
between stimulus i and stimulus j.

Step 3a. Neural RDM. To create a neural RDM, we compare the
pattern of neural responses associated with each stimulus (or
condition) with every other stimulus’ neural response pattern.
Therefore, we first obtain a single response pattern for each
stimulus (rather than one response pattern per stimulus per
run) by averaging the neural response patterns for each stimulus
across runs.2 Neural RDMs are often constructed by calculating
the Pearson correlation distance, 1-r, between each pair of neural
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Fig. 3. Classification analysis. (A) Within each participant, an algorithm is trained on a subset (here, 9 out of 10 runs) of a participant’s data and then tested on a

previously unseen subset (here, the heldout run). In the training phase, each sample (here, the multivoxel pattern for each condition in each run) is treated as a point in

a representational space. For m voxels per sample, there are m dimensions in the representational space. Each sample’s coordinates are defined by the magnitude of each

voxel’s response (i.e. voxel 1’s response magnitude = coordinate along axis 1, etc.). In many commonly used classification methods, the algorithm then tries to define

a boundary (in linear SVM learning, a (m-1)-dimensional hyperplane) in the space such that each sample is classified with its correct label (note that the illustration

is merely a conceptual example; please see the main text for a more specific discussion of how particular classification algorithms work). (B) After calibrating model

parameters on the training data, the algorithm is then fed the testing data, which it has never seen, without the correct labels. Depending on where those samples

fall in the representational space, the algorithm classifies them based on the distinctions it has learned from the training data. If a sample was incorrectly classified,

it is counted as an error. (C) The average accuracy across all data folds is calculated for each participant. (D) Repeat this process for each participant, and compare the

group-level accuracy to what would be expected based on random chance.

response patterns, but there are other distance metrics that
may be used (see RDM Distance Metrics section; Figure 4A).
Theoretically, the higher the correlation distance, the more the
brain region distinguishes between those two concepts.

Once calculated, these distance values are organized into an
RDM. Note that this will result in a symmetric matrix across
the diagonal because the difference between a baby human
and a baby dog is the same as that between a baby dog and
a baby human. Note also that the diagonals will all be zero,
because each condition is perfectly correlated with itself, and
thus has a correlation distance of zero. If comparing two RDMs,

this symmetry and diagonal of zeros would falsely increase
the correlation between the full RDMs, so only the lower off-
diagonal triangles of the RDMs are extracted for further analyses
(Figure 4A).

Step 3b. Non-neural RDMs. In order to determine what the
structure of the neural RDM corresponds to, we can compare
it with similarly prepared RDMs from participant data (e.g. per-
ceived age; Figure 4C), objective data (e.g. species; Figure 3E) or
data generated from a model (e.g. hypothesized interaction of
perceived age and species). In our example, we might want
to test if a brain region organizes faces by perceived age. To
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Fig. 4. Representational similarity analysis. Representational similarity analysis (RSA) can be used to create (and, often, compare) RDMs summarizing (A) neural, (C)

behavioral and (E) model-based data. (A) To create the neural RDM, the patterns of neural responses elicited by each condition within a particular region are compared

with each other to estimate their relative distinctiveness (e.g. the correlation distance between them, 1-r). These distances are organized into a neural RDM. Since the

RDM is symmetric about a diagonal of zeros, only the lower off-diagonal triangle of this matrix is extracted, which can be (B) visualized in a low-dimensional space

using MDS or (D) compared to a behavioral dissimilarity structure. (B) The MDS plot visualizes the dissimilarity structure by plotting conditions that are more similar

closer together. Here, we can see that human faces cluster together and are separate (i.e. dissimilar) from dog faces. We can also see that there seems to be an effect of

age, such that young faces are similar to each other and separate from older faces. (C) This effect of perceived age can be tested by creating a behavioral dissimilarity

structure. This is achieved by finding the absolute difference between the perceived youth of each pair of faces. Again, the lower off-diagonal triangle is extracted.

(D) The lower off-diagonal triangles of the neural and behavioral RDMs are compared with one another, often using the Spearman correlation, as it does not assume

a linear mapping between RDMs. This correlation coefficient is mapped back into the region, creating a map of how closely the neural data matches the behavioral

ratings. (E) A model RDM of species reflects if two pictures are of the same species or not. (F) Multiple RDMs can be included as predictors in a regression, and the

resulting betas may be mapped back into the ROI as an indicator of how much that variable predicted the neural data over and above the other predictor(s).
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Fig. 5. Nested k-fold cross-validation with hyperparameter tuning. Cross-validation consists of iteratively splitting data into training and testing datasets, training an

algorithm on the training data and then testing the resulting model on the testing data. For each of the k divisions of the data (i.e. folds), hyperparameter tuning may

be performed within the training data for that fold. To perform hyperparameter tuning, one would further split the training data into a number of ‘sub-folds’ consisting

of sub-training and validation datasets. Within each of these ‘sub-folds’, the algorithm is trained on the sub-training data and tested on the validation data once per

hyperparameter set. Once every unique combination of hyperparameters has been tested in every ‘sub-fold’, the hyperparameter set with the best performance across

the validation datasets (within the training data) is selected. The selected hyperparameter set is then used to train the algorithm on the entire set of training data for

that fold. The resulting model is then tested on the testing data in that fold. This process is repeated for each fold (i.e. k times). Finally, the average performance of the

algorithm across all testing datasets is calculated.

create a behavioral RDM based on the perceived age for each
participant, we could calculate the absolute difference between
the participant ratings of age for each pair of conditions and then
organize this into a matrix and extract the lower off-diagonal
triangle (Figure 4C).

Step 4 (option 1). Compare neural and non-neural RDMs. Now
we can test how well an individual’s behavioral RDM predicts
that same individual’s neural RDM. This is typically achieved by
correlating the lower triangles of both RDMs (Figure 4D). Note
that since behavioral and neural RDMs likely use different scales,
using Spearman rather than Pearson correlations to determine
how well they correspond can be beneficial, as this does not
assume a linear relationship. If you have multiple predictors
(e.g. various stimulus properties) that you would like to test,
you can enter them into an RSA regression and test how well

each predictor RDM predicts the neural data over and above
the other predictors by examining the relevant beta coefficients
(Chikazoe et al., 2014; Nastase et al., 2017; Parkinson et al., 2017).
For example, we could include both the age RDM (Figure 4C)
and another model RDM that reflects whether or not two faces
are of the same species (Figure 4E), as predictors in a regression
with the neural RDM as the predicted variable (Figure 4F). The
beta associated with perceived age would reflect the extent to
which age predicts the neural data over and above species. If
doing so, it is important to first ensure that the predictor RDMs
are independent of one another, as, otherwise, their respective
regression coefficients will be difficult to interpret.

Step 4 (option 2). Visualize RDMs. RDMs can also be used to
visualize the structure of the data. When visualizing RDMs,
each cell is often colored based on its value to visually indicate
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which conditions are similarly represented (e.g. lighter colors in
Figures 2 and 4) and which are represented more distinctly (e.g.
darker colors in Figures 2 and 4). Techniques such as MDS can
also be used to view the overall structure of the data. MDS plots
data points in a low-dimensional space based on how similar
they are: two stimuli that elicit similar response patterns are
plotted close together, while two stimuli that elicit different
response patterns are plotted further apart (Figure 4B). This can
help identify how stimuli are organized in the brain (e.g. dog
faces may cluster together and may be separate from human
faces in a particular brain region).

Statistical testing. After you have completed the above steps, you
are ready for significance testing. In many cases, this can be done
in the same way as in univariate experiments: results from a
searchlight analysis, for example, have a similar data structure
to other statistical parametric maps (e.g. one value at each
voxel) and can therefore undergo somewhat similar statistical
testing. Of course, the exact approach you use will depend on
the specifics of your data. For example, it is important to make
sure the test you are using is appropriate for the range and
distribution of your data’s values. Since correlation coefficients
and classification accuracy values are bounded by zero and
one, it is appropriate to transform them (e.g. using the arcsine
transformation) or use non-parametric tests (e.g. permutation
testing).

The statistical significance of the results of RSA or decoding
analyses can be assessed within each subject or across subjects,
and these methods test fundamentally different questions. More
specifically, within-subject significance testing of MVPA results
assesses if and by how much that participant’s data (e.g. corre-
lation of a neural RDM with a model- or behavior-based RDM,
decoding accuracy) differ from the null, while between-subject
significance testing assesses if and by how much this effect
differs from the null across people (similar to univariate analyses
on activation-based estimates).

Within-subject testing. Generally, within-subject significance
testing entails randomly shuffling the labels associated with
all samples in a participant’s data (e.g. the patterns that are
used to create RDMs in RSA and that comprise the training
data in decoding analyses) many times. The relevant statistical
test (e.g. correlation of the permuted neural RDM with a model
RDM, classification analysis) is then performed on each iteration
to create a null distribution to which the true test statistic
(generated from the non-shuffled data) can be compared. The
result is considered significant if it surpasses the critical value in
this null distribution (e.g. for α = 0.05, one-tailed, it is significant
if it is above the 95th percentile).

Across-subject testing. Testing the significance of MVPA results
across subjects can be accomplished in much the same way that
data from corresponding ROIs or statistical parametric maps are
tested for significance across participants in univariate studies.
It should be noted that if voxel-wise results were obtained for
each participant (e.g. searchlight analyses) and decoding anal-
yses and/or RSA were performed on unsmoothed or minimally
smoothed data in each participant’s native space, each partic-
ipant’s data should be aligned to an anatomical template, and
potentially, subjected to additional spatial smoothing prior to
group-level significance testing. Note that if using multiple com-
parison correction methods that require estimating smoothness
(e.g. family-wise error correction) of MVPA data (e.g. searchlight
maps), it is important to base these estimates on the relevant

residuals (e.g. of searchlight results rather than of responses
themselves; for an example, see Linden et al., 2012).

What questions can we ask with MVPA?
In this section, we will discuss the types of research ques-
tions that are particularly amenable to MVPA. We will consider
how MVPA can be used to answer different kinds of research
questions. For clarity, we will continue to consider our example
experiment in which participants considered human and dog
faces of varying ages while undergoing fMRI.

Brain-reading

Many researchers are inherently interested in what the partic-
ipant is currently thinking about or attending to (i.e. ‘brain-
reading’) since the ability to determine what cognitive state the
participant is in can provide valuable information about where
and how information is neurally processed. In our example
above, we used classification analysis to determine if people
are considering human or dog faces. If we can successfully
train a predictive model to decode this information based on
response patterns evoked in a given brain region, then there
are likely fundamental differences in how human and dog
faces (or some covariate) are represented in that region. This
can provide valuable insight into how the brain encodes such
information.

Stages of neural processing

We can also examine how information is transformed as it
travels through different brain regions. In the Benefits of MVPA
section, we discussed a study that provided evidence that the
left STS and mPFC represent emotion in terms of its abstract
emotional value independent of the modality through which
the emotion is expressed (Peelen et al., 2010) and, in general,
how we can use MVPA to elucidate how representations change
across brain regions as they progress through different stages of
processing. For example, this approach can illustrate how infor-
mation is transformed as it progresses from early sensory cortex
(where neural population codes reflect low-level sensory proper-
ties, such as modality) to later stages of processing (where neural
population codes reflect higher-level, more abstract categories,
such as emotional content). This can be tested by comparing
each brain region’s neural RDM with a model RDM (e.g. whether
two stimuli were presented in the same modality) to see which
model matches best at each stage. We could also visualize the
differences by plotting the neural RDMs with MDS. This could
allow us to see how the stimuli are represented at each neural
processing stage.

Underlying neurocognitive mechanisms

Earlier, in the step-by-step instructions, we discussed how RSA
may be used in our example to discover that a brain region
clusters stimuli by age as well as by species and how to test
this using explicit models. That is, RSA allows us to test what
type of information a given brain region uses to organize state
or stimulus representations. Decoding analyses can be used in
a complementary fashion to RSA. Using cross-classification, we
can ask if we represent age in the same way across species.
Cross-classification involves training a model within one condi-
tion (e.g. to distinguish human faces based on age) and then test-
ing the model on another condition (e.g. to distinguish dog faces
based on age). If the model can reliably decode the age of dog
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faces after being trained on human faces, then there are likely
consistent underlying patterns that encoded age across species
in this region. This would suggest that people represent the age
of human and dog faces similarly at this level of processing.

Individual differences

Does everyone see and process the world in the same way?
Just like univariate analyses, individual differences may be
integrated with any type of MVPA to better understand how
individuals process information. That is, results from MVPA
can be used to predict individual differences. For example,
Ersner-Hershfield et al. (2009) found that individuals with greater
continuity between their present and future selves save more
for retirement. One could, for example, follow up on this
with an fMRI study by examining the similarity of response
patterns associated with participants’ present and future
selves. The similarity of these response patterns may reflect
future self-continuity and thus predict retirement savings.
MVPA is a useful tool when studying individual differences
because these differences may manifest in the distinctiveness
of neural patterns, not just the overall response magnitude of
a region.

Issues in MVPA
Although we have focused largely on the benefits of MVPA,
like any data analytic technique, there are important issues
and potential pitfalls to consider. For instance, in decoding
analyses, it can be difficult to interpret anything about the
model itself, beyond the yes or no question of whether or not a
region distinguishes between the stimuli (Carlson and Wardle,
2015). MVPA also introduces many more researcher degrees of
freedom.

It is important to remember that MVPA is not simply a
replacement of univariate analyses. For example, many com-
mon methods of implementing MVPA are not very sensitive to
the shift of an ROI’s mean magnitude across conditions, which
univariate analyses capture easily (Davis et al., 2014; Naselaris
and Kay, 2015). In addition, it is important to consider that
two conditions might evoke similar univariate responses but
different multivoxel response patterns. This does not neces-
sarily imply that these conditions have nothing in common
psychologically or that they do not entail shared processing
demands. As such, both techniques may be used in a com-
plementary manner. In this section, we describe issues that
may be helpful to consider when planning and interpreting
MVPA.

What are we measuring, content or process?

In both MVPA and univariate analyses, it is often difficult
to ascertain when the apparent neural encoding of stimulus
characteristics reflects the computation or representation of
those characteristics themselves and when it reflects systematic
(and perhaps subtle) effects on processes that typically follow
the computation of those characteristics. For example, much
previous research suggests that the activity in parietal and
premotor regions associated with planning and executing
actions is associated with viewing tools; whether this activity
reflects encoding part of the tool concept itself (Mahon and
Caramazza, 2008), or downstream processes that typically
follow tool identification (e.g. prediction of future actions;
Martin, 2016), is the subject of ongoing debate. Thus, the same

results may be interpreted by some authors as information
encoding and by other authors as processes being affected by
that information. In the same way, if a decoding analysis can
distinguish between human and dog faces, it is unclear if that
brain region encodes the content of those stimuli differently
(e.g. physical features) or if this result reflects differences in
other related processes (e.g. behavioral predictions, knowledge
retrieval).

Beyond static multivoxel response patterns

In some cases, researchers may be interested in elucidating the
neural basis of psychological processes that unfold over time,
rather than ‘snapshots’ of perceptions (e.g. someone’s apparent
emotional state) or retrieved knowledge (e.g. the social group to
which someone belongs). In such instances, it can be appropriate
to use characterizations of fMRI data that capture how responses
change over time, such as how multivoxel patterns ebb and
flow over time (e.g. Chang et al., 2018; R. Hyon et al., 2020) or
how patterns of functional connectivity vary across tasks or
conditions (Richiardi et al., 2011; Shirer et al., 2012). The same
methods used in MVPA can be used to analyze patterns of func-
tional connectivity. A particular benefit of characterizing task-
evoked fMRI responses using patterns of functional connectivity,
where each feature is a correlation between two brain regions’
response time series (e.g. the functional connectivity between
the amygdala and prefrontal cortex), is that, unlike voxels, these
features are abstracted away from the spatial layout of the data
and, thus, readily generalize across participants. As such, when
analyzing patterns of functional connectivity to decode psycho-
logical processes or states, data can be easily aggregated across
participants, which can substantially increase the amount of
training data available for decoding analyses and, in turn, the
ability of machine learning algorithms to learn generalizable
distinctions between conditions.

Within- vs between-subject decoding

As alluded to above, decoding analyses generally benefit from
having more training data in which to learn distinctions between
conditions, and one way to achieve this is by analyzing response
patterns that can be well-aligned across participants. This
includes cases where patterns of functional connectivity, rather
than multivoxel response patterns, are used for decoding
(Richiardi et al., 2011; Shirer et al., 2012), and also cases where
functional alignment methods are employed (Haxby et al., 2011;
Chen et al., 2015), or where RSA is used to generate features for
decoding in ‘similarity space’ rather than ‘voxel space’ (Raizada
and Connolly, 2012). In addition to the tendency for techniques
that facilitate between-subject decoding to produce relatively
high classification accuracies (due to the increase in the
amount of training data available), between-subject decoding
approaches could also have practical benefits in cases where
researchers wish to predict things about new individuals. That
said, within-subject analyses may be preferable in cases where
response patterns are thought to be idiosyncratic to particular
participants, either because of between-subject heterogeneity in
fine-scale functional brain organization (see Comparison Across
Individuals section and Representational Spatial Scale section)
or because the stimuli in question connote meaning that is
inherently specific to each participant (e.g. the personal meaning
of objects, Charest et al., 2014; real-world social relationships,
Parkinson et al., 2017).
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Imaging resolution

While MVPA can detect information carried at a finer-grained
spatial scale than most univariate fMRI analyses, it is still rela-
tively coarse when compared with methods that analyze indi-
vidual neurons. Patterns of neuronal activity have been shown
to carry a diversity of information (Georgopoulos et al., 1988;
Pouget et al., 2000; Kiani et al., 2007), yet each fMRI voxel contains
hundreds of thousands of neurons. Thus, while we are gaining
some nuanced signal in MVPA compared with univariate tests,
we are missing information carried at a much finer spatial scale.

Examining multivoxel, rather than multi-neuron, patterns can
systematically produce both false positives and false
negatives. The relatively low spatial resolution of fMRI data can
engender misleading results in the context of MVPA, potentially
leading to false positives in some cases and false negatives in
others. For example, neurophysiological studies in monkeys
show that nearby but largely non-overlapping sets of neurons in
the orbitofrontal cortex encode the value of social and non-social
rewards (Watson and Platt, 2012). Given that many thousands of
neurons comprise each voxel in a multivoxel pattern, using
MVPA (or univariate analyses) on fMRI data to study such
phenomena may lead researchers to erroneously conclude the
presence of a common encoding scheme. This could be an
issue in any cases where distinct, but nearby or interdigitated,
populations of neurons encode different kinds of information.

On the other hand, analyzing multivoxel patterns, rather
than multi-neuron patterns, can also systematically produce
false negatives. Dubois et al. (2015) compared the analyses of
populations of single units and of multivoxel patterns of fMRI
data while monkeys viewed faces. Both the identity and view-
point of faces could be decoded from multi-neuron response
patterns, but that only facial viewpoint, and not identity, could
be reliably decoded using MVPA. This appeared to be due to the
fact that whereas similarly tuned cells signaling facial viewpoint
were tightly clustered in space, similarly tuned cells signaling
facial identity were weakly spatially clustered. Thus, MVPA of
fMRI data may not be sensitive to information present in the
actual underlying neural population codes when neurons are not
strongly clustered based on their selectivity to a given stimulus
dimension.

Uncertainty about the timing of social and affective
processes

When studying the neural basis of social and affective pro-
cesses, researchers will sometimes be uncertain when exactly
a psychological process occurred. For example, if a participant
is given an 8 s window to reappraise a stressful event, it can be
difficult or impossible to ascertain when during that 8 s window
the start, end, and duration of that reappraisal process actually
took place (Lieberman and Cunningham, 2009). In such cases,
how should researchers approach MVPA methods? One option
is to simply estimate the multivoxel response pattern from an
entire block or event, as one might do for a univariate analysis,
and submit those event-wise patterns to MVPA. Another option
would be to estimate the multivoxel response patterns at each
time point within a block or event and then perform decoding
or RSA separately at each time point to test when information
that distinguishes between conditions is reliably present across
participants (Soon et al., 2008; Cichy et al., 2014). Note that this
approach assumes consistency across participants and events
in the timing of the psychological process at hand.

If the timing of a psychological process is thought to differ
across people and events, and the researcher does not wish
to estimate a single multivoxel response pattern for the entire
event (i.e. the first option summarized above), complications
can arise. For instance, there would be a very large number of
possible combinations of durations and onsets to choose from
for each event when generating multivoxel patterns to analyze.
Trying out different possibilities of onsets and durations for each
event would be both computationally intensive and necessitate
correcting for an untenably large number of statistical tests.
One strategy would be to concatenate multivoxel response
patterns from different time points within each event into
a longer feature vector (i.e. a single sample) and then use
supervised learning to identify which spatiotemporal features
distinguish between conditions. Although such a method
would assume consistency across events in the temporal
profile of how a psychological process unfolds, it would allow
for heterogeneity in the timing of psychological processes
across participants if carried out within each participant
separately. We encourage researchers concerned with such
questions to explore emerging approaches being developed
to analyze neuroimaging modalities with greater temporal
resolution than fMRI (e.g. Su et al., 2012; King et al., 2014;
Grootswagers et al., 2017), as they may be adapted for fMRI
and foster a richer consideration of how the spatiotemporal
dynamics of neural response patterns relate to psychological
processes.

Conclusion
In this article, we aimed to provide a practical and accessi-
ble introduction to the popular family of analyses known as
multivoxel pattern analysis, or MVPA, for social and affective
neuroscientists of all levels, particularly those new to such meth-
ods. We explained what MVPA is by comparing it to commonly
used univariate analyses, explored different types of questions
that can be answered with MVPA and covered practical steps
and considerations required to implement MVPA in one’s own
data. Many others have discussed the finer points of specific
analyses that were referred to more generally here and should
be studied for a deeper understanding of these tools (e.g. RSA,
Kriegeskorte et al., 2008a, Diedrichsen and Kriegeskorte, 2017;
decoding, Pereira et al., 2009; hyperalignment, Haxby et al., 2011)
and new ways in which to implement them (e.g. pattern-based
biomarkers, van der Miesen et al., 2019; representational con-
nectivity between brain regions, Anzelloti et al., 2017; real-time
decoded neurofeedback, Watanabe et al., 2017; Taschereau-Du-
mouchel et al., 2018). In recent years, MVPA has grown rapidly
in popularity. As these techniques are expanded and applied
in new ways, we will be able to use neuroimaging to explore
many new types of questions in the field of social and affective
neuroscience.
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